|Table of Contents|

The Oxidative Damage of Spirodela polyrrhiza Under Mn Stress(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2016年19
Page:
89-96
Research Field:
Publishing date:

Info

Title:
The Oxidative Damage of Spirodela polyrrhiza Under Mn Stress
Author(s):
ZHANG Lifang1WANG Jinghua1SHI Guoxin1YANG Haiyan2
(1.College of Life Science,Nanjing Normal University/Jiangsu Key Laboratory of Biodiversity and Biotechnology,Nanjing,Jiangsu 210023;2.Jiangsu Province Institute of Botany,Chinese Academy of Sciences,Nanjing,Jiangsu 210023)
Keywords:
MnSpirodela polyrrhizaoxidative damagefourier transform infrared spectroscopy(FTIR)
PACS:
-
DOI:
10.11937/bfyy.201619024
Abstract:
The effect of Mn (0,0.02,0.04,0.06,0.08,0.10 mmol?L-1) in different concentrations in the Spirodela polyrrhiza was studied,and the oxidative damage,antioxidant system and the influence of Ca2+-ATP enzyme activity in the S.polyrrhiza were analyzed.The change of the infrared spectra was analyzed by Fourier transform infrared spectroscopy (FTIR).The results showed that Mn stress caused obvious oxidative damage,such us the dramatical increase of the generation rate of O?[TX-*4]2,the accumulation of H2O2 and MDA in great quantities,and the obvious decreases of the content of soluble protein and photosynthetic pigment in leaves.The content of the soluble sugar decreased after an increase in short.The antioxidant system was destroyed.Along with the increase of Mn concentration,the activity of catalase (CAT) and superoxide dismutase (SOD) declined after increasing.But the activity of peroxidase (POD) in leaves increased gradually,and the levels of GSH,vitamin C and vitamin E increased sharply.The content of proline increased obviously.The activity of the Ca2+-ATP enzyme obviously decreased after increasing.The infrared spectra showed that the peak increased firstly and then decreased in the place of 3 396 cm-1,2 920 cm-1,1 658 cm-1 and 1 062 cm-1,which reflected the content of amino acid,sugars,proteins and carboxylic acid were obviously effected by the Mn stress.In a conclusion,oxidative damage of the S.polyrrhiza was obvious under Mn treatment.The balance of antioxidant system has been broken.The activity of the Ca2+-ATP enzyme changed obviously.In addition,the content of amino acids,sugars,carboxylic acid were also significantly affected.In other words,S.polyrrhiza was obviously damaged by the Mn stress.

References:

 

[1]王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005,25(3):596-605.

[2]陶岳云,倪木子,夏圣骥.地表水锰污染在水处理中去除研究进展[J].水科学与工程技术,2015(5):62-65.

[3]夏海威,吴娟,黄敏,.外源鸟氨酸对菹草(Potamogeton crispus L.)抗镉胁迫能力的影响[J].湖泊科学,2014,26(2):288-296.

[4]畅喜云,范月君,陈志国.重金属Cr6+,Mn2+污染对小麦幼苗生理生化特性及生长的影响研究[J].种子,2012,31(8):39-42.

[5]徐校晖,林海芳,邹克勤.Fe2+对紫背浮萍生长和生理生化特性的影响[J].北方园艺,2012(11):15-18.

[6]薛生国,黄艳红,王钧,.采用FTIR法研究酸模叶蓼对锰胁迫生理响应的影响[J].中南大学学报(自然科学版),2011,42(6):1528-1532.

[7]ZHANG X B,LIU P,LI D T,et al.FTIR spectroscopic characterization of chromiuminduced changes in root cell wall of plants[J].Spectroscopy and Spectral Analysis,2008,28(5):1067-1070.

[8]顾艳红,刘鹏,蔡琪敏,.FTIR结合生理特性研究镉胁迫对果灰藓的影响[J].光谱学与光谱分析,2009,29(3):620-623.

[9]GONG N,LIR H,MENG Z F,et al.Physiological response of Brassica chinensis L.seeds in germination to cadmium toxicity by FTIR-ART spectroscopy[J].Journal of Argo-environment Science,2010,29(1):9-14.

[10]吴征镒.中国植物志[M].北京:科学出版社,2002:32-34.

[11]LICHTENTHALER H K.Chorophylls and carotenoids:pigments of photosynthetic biomembrance[J].Methods in Enzymology,1987,148:350-382.

[12]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:29-31.

[13]王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系[J].植物生理学通讯,1990(26):55-57.

[14]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2002:122-126.

[15]张志良,瞿伟菁.植物生理学实验指导[M].3.北京:高等教育出版社,2003:45-46.

[16]BEYER W F,FRIDOVICH I.Assaying for superoxide dismutase activity:Some large consequences of minor changes in condition[J].Analytical Biochemisty,1987,161:559-566.

[17]GTH L.A simple method for determination of serum catalase activity and revision of reference range[J].Clinica Chimica Acta,1991,196:143-151.

[18]覃勇荣,农艳春,潘振兴,.桂西北65种石山植物的丙二醛和脯氨酸含量[J].贵州农业科学,2012,40(9):49-53.

[19]付川,余顺慧,黄怡民,.紫花苜蓿对铜胁迫生理响应的傅里叶变换红外光谱法研究[J].生态学报,2014,34(5):1149-1155.

[20]OKSANA S,ABHAY K,DARIUSZ L,et al.Heavy metal-induced oxidative damagedefense reactionsand detoxification mechanisms in plants[J].Acta Physiologiae Plantarum,2013,35(4):985-999.

[21]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99.

[22]丁春霞,施国新,徐勤松,.水鳖叶片对不同浓度Pb2+胁迫的生理和结构响应[J].广西植物,2009,29(6):768-773.

[23]JOHN R,AHMAD P,GADGIL K,et al.Effect of cadmium and lead on growthbiochemical parameters and uptake in Lemna polyrrhiza L[J].Plant Soil Environment,2008,54(7):262-270.

[24]郝雅宾,李凤山,刘海山.锰、铁胁迫对商陆和高羊茅可溶性蛋白的影响[J].福建师范大学学报,2013,29(3):97-103.

[25]张永霞,石贵玉,李霞,.锰、铬胁迫对罗汉果幼苗生理生化指标的影响[J].中国农学通报,2011,27(2):12-16.

[26]徐靖宇,周研,徐明,.盐胁迫对大豆萌发中可溶性含量影响的研究[J].辽宁农业科学,2014(6):1-5.

[27]唐咏,王萍萍,张宁.植物重金属毒害作用机理研究现状[J].沈阳农业大学学报,2006,37(4):551-555.

[28]周希琴,莫灿坤.植物重金属胁迫及抗氧化系统[J].新疆教育学院学报,2003,19(2):103-108.

[29]覃光球,严重玲,韦莉莉.秋茄幼苗叶片单宁、可溶性糖和脯氨酸含量对Cd胁迫的响应[J].生态学报,2006,26(10):3366-3371.

[30]黄敏,施国新,夏海威,.不同pH处理对菹草(Potamogeton crispus L.) Cr6+毒害效应的影响[J].湖泊科学,2014,26(4):607-615.

[31]YANG H Y,SHI G X,WANG H X,et al.Involvement of polyamines in adaptation of Potamogeton crispus L to cadmium stress[J].Aquatic Toxicology,2010,100(3):282-288.

[32]途俊芳,刘登义,王兴明.Cu胁迫对紫背萍的生长及活性氧清除系统的影响[J].生物学杂志,2006,23(3):11,18-21.

[33]李宏文,梁娜.水生植物的生态敏感度研究[J].农业环境保护,2001,20(3):160-163.

[34]MUHAMMAD Y A,RUMANA S,MUMTAZ H,et al.Toxic Effect of Nickel (Ni) on growth and metabolism in germinating seeds of sunflower(Helianthus annuus L.)[J].Biological Trace Element Research,2011,143(3):1695-1703.

[35]夏卓英,张明强,王良峰.不同浓度Pb()对稀脉萍和紫萍的毒害效应[J].环境科学与技术,2009,32(6):123-129.

[36]吴娟,施国新,黄敏,.外源钙对菹草(Potamogeton crispus L.)汞胁迫的影响效应[J].湖泊科学,2014,26(3):423-431.

[37]于天昊,洪宇,谢庆恩,.外源蔗糖、VC对铬诱导的拟南芥主根生长抑制和过氧化物积累的缓解作用[J].中国农学通报,2010,26(6):289-292.

[38]张一弓,张丽静,傅华.植物维生素E合成酶基因克隆及其逆境生理研究进展[J].草业学报,2009,18(5):235-242.

[39]龚红梅,沈野.植物对重金属锌耐性机理的研究进展[J].西北植物学报,2010,30(3):633-644.

[40]王学奎.植物生理生化实验原理和技术[M].2.北京:高等教育出版社,2006:34-37.

[41]YANG T B,POOVAIAH B W.Calcium/calmodulin-mediated signal network in plants[J].Trends Plant Sci,2003,8(10):505-513.

[42]NUMBER T.SCHEEL D.Singal transmission in the plant immune response[J].Trends Plant Sci,2001,6(8):372-380.

[43]SNEDDEN W A,FROMM H.Calmodulin as a versatile calcium signal transducer in plant[J].New Phytol,2001,151:35-66.

[44]HU X L,JIANG M Y,ZHANG J H,et al.Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and function both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants[J].New Phytol,2007,173:27-28.

[45]LIU S L,YANG R J,MA M D,et al.Effects of exogenous NO on the growthmineral nutrient contentantioxidant systemand ATPa se activities of Trifolium repens L.plants under cadmium stress[J].Acta Physiol Plant,2015,37(1):e1721.

[46]KABAA K,JANICKA-RUSSAK M,BURZYNKG-1.8mm〗′〖KG0.65mmSKI M,et al.Comparison of heavy metal effect on the proton pumps of plasma membrane and tonoplast in cucumber root cells[J].J Plan Physiol,2008,165:278-288.

[47]BURZYNKG-1.8mm〗′〖KG0.65mmSKI M,KOLANO E.In vivo and in vitro effects of copper and cadmium on the plasma membrane H+-ATPase from cucumber (Cucumis sativus L.) and maize (Zea mays L.) roots [J].Acta Physiol Plant,2003,25:39-45.

[48]REN L M,CHENG Z F,LIU P,et al.Studies on the physiological response of Phytolacca ameriicana to managanese toxicity by FRIR spectroscopy[J].Spectroscopy and Spectral Analysis,2008,28(3):582-585.

[49]薛生国,朱锋,叶晟,.紫茉莉对铅胁迫生理响应的FTIR研究[J].生态学报,2011,31(20):6144-6148.

[50]付川,余顺慧,黄怡民,.紫花苜蓿对铜胁迫生理响应的傅里叶变换红外光谱法研究[J].生态学报,2014,34(5):1149-1155.

[51]XUE S G,HUANG Y H,WANG J,et al.Physiological response of Polygonum lapathifolium to anganse stress by FTIR Spectroscopy[J].Journal of Certral South University(Science and Technology),2011,42(6):1528-1532.

[52]张晓斌,刘鹏,李丹婷.铬诱导植物根细胞壁化学成分变化的FTIR表征[J].光谱学与光谱分析,2008,28(5):1067-1070.

[53]任立民,成则丰,刘鹏,.美洲商陆对锰毒生理响应的FTIR研究[J].中光谱学与光谱分析,2008,28(3):582-585.

Memo

Memo:
-
Last Update: 2016-11-07