|Table of Contents|

Effect of Elevated Air Temperature on Chlorophyll Fluorescence Parameters in Zizyphus jujube Mill.cv.Lingwu changzao Under Different Soil Drought Stress(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2016年15
Page:
5-10
Research Field:
Publishing date:

Info

Title:
Effect of Elevated Air Temperature on Chlorophyll Fluorescence Parameters in Zizyphus jujube Mill.cv.Lingwu changzao Under Different Soil Drought Stress
Author(s):
QIN FangCAO BingSONG Lihua
(School of Agriculture,Ningxia University,Yinchuan,Ningxia 750021)
Keywords:
elevated air temperaturedrought stress Zizyphus jujube Mill.cv.Lingwu changzaochlorophyll fluorescence parameters
PACS:
-
DOI:
10.11937/bfyy.201615002
Abstract:
Taking4-year-old Zizyphus jujube Mill.cv.Lingwu changzao (Lingwu long jujube) as test material,using infrared radiation equipment to control simulating elevated temperature environment,and automatic irrigation system to control soil water levels,the chlorophyll fluorescence parameters of Lingwu long jujube was tested that treated by two air temperature levels and three soil water levels to study the effect of elevated air temperature and soil drought stress on chlorophyll fluorescence parameters in Lingwu long jujube.The results showed that when treated 40 days,Fo,Fv/Fm,Fv/Fo,qP were decreased with the increasing of soil drought stress under elevated air temperature 2 ℃.When treated 80 days,Fo was increased and Fv/Fm,Fv/Fo were decreased with the increasing of soil drought stress under elevated air temperature,while NPQ was higher than that of ambient temperature treatment.All these indicated that elevated air temperature relieved decreasing of ETR and light inhibition in Lingwu long jujube caused by soil drought,and improved its light protection capable under soil drought stress.

References:

 

[1]MITCHELL J F BJOHNS T CGREGORY J M.Climate response to increasing levels of greenhouse gases and sulfate aerosols[J].Nature1995,376:501-504.

[2]KOVCS F.Problems in the relationship between CO2 emissions and global warming[J].Acta Montanistica Slovaca2005,10(1):9-18.

[3]王连喜,李菁,李剑萍,.气候变化对宁夏农业的影响综述[J].中国农业气象,2011,32(2):155-160.

[4]LEWIS J DLUCASH MOLSZYK D M.Relationships between needle nitrogen concentration and photosynthetic responses of Douglas-fir seedlings to elevated CO2 and temperature[J].New Phytologist,2004,162:355-364.

[5]HIMANEN S JNERG A MNISSINEN Aet al.Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape(Brassica napus)[J].New Phytologist,2009,181:174-186.

[6]WALLACE J S.Increasing agricultural water use efficiency to met future food production[J].AgricultureEcosystems and Environment2000,82:105-119.

[7]常兆丰,韩福贵,仲生年.甘肃民勤荒漠区18种乔木物候与气温变化的关系[J].植物生态学报,2009,33(2):311-319.

[8]郑广芬,陈晓光,孙银川,.宁夏气温、降水、蒸发的变化及其对气候变暖的响应[J].气象科学,2006,26(4):412-418.

[9]董瑜,汪学华,杨倩.气候变化对植物影响的研究进展[J].广东农业科学,2013,25(2):34-36.

[10]綦伟,谭浩,翟衡.干旱胁迫对不同葡萄砧木光合特性和荧光参数的影响[J].应用生态学报,2006,17(5):835-838.

[11]陈屏昭,王磊.缺硫对脐橙叶片光合特性和叶绿素荧光参数的影响[J].生态学杂志,2006,25(5):503-506.

[12]张乐华,周广,孙宝腾.高温胁迫对两种常绿杜鹃亚属植物幼苗生理生化特性的影响[J].植物科学学报,2011,29(3):362-369.

[13]黄锦文.结缕草温度胁迫的生理响应及其分子机制研究[D].厦门:福建农林大学,2009.

[14]刘瑞侠,李艳辉,陈绍宁,.干旱高温协同胁迫对玉米幼苗抗氧化防护系统的影响[J].河南农业大学报,2008,42(4):363-366.

[15]柯世省,金则新.水分胁迫和温度对夏蜡梅叶片气体交换和叶绿素荧光特性的影响[J].应用生态学报,2008,19(1):43-49.

[16]宋丽华,周利伟.气温升高对枸杞苗木生长的影响[J].林业科技,2010,35(2):62-64.

[17]KIM H YLIM S SKWAK J Het al.Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.) exposed to experimental warming with elevated CO2[J].Plant Soil,2011,342:59-71.

[18]CHOI E YSEO T CLEE S Get al.Growth and physiological responses of Chinese cabbage and radish to long-term exposure to elevated carbon dioxide and temperature[J].Hor Environ Biotechnol2011,52(4):376-386.

[19]REDDY A RRASINENI G KRAGHAVENDRA A S.The impact of global elevated CO2 concentration on photosynthesis and plant productivity[J].Current Science,2010,99(1):46-57.

[20]KGOPE B SBOND W JMIDGLEY G F.Growth responses of African savanna trees implicate atmospheric[CO2] as a driver of past and current changes in savanna tree cover[J].Austral Ecology201035(4):451-463.

[21]杨金艳,杨万勤,王开运,.木本植物对CO2浓度和温度升高的相互作用的响应[J].植物生态学报,2003,27(3):304-310.

[22]牛书丽,韩兴国,马克平,.全球变暖与陆地生态系统研究中的野外增温装置[J].植物生态学报,2007,31(2):262-271.

[23]赵会杰,邹内琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报,2000,34(3):248-251.

[24]张会慧,张秀丽,胡彦波,.碱性盐胁迫对桑树幼苗叶片叶绿素荧光和激发能分配的影响[J].经济林研究,2012,30(1):6-12.

[25]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55.

[26]卢广超,许建新,薛立,.低温胁迫对 4 种幼苗的叶绿素荧光特性的影响[J].中南林业科技大学学报,2014,34(2):44-49.

[27]王艺陶,周宇飞,李丰先,.干旱胁迫对高粱叶绿素荧光参数的影响[J].沈阳农业大学学报,2013,44(4):398-403.

[28]DEMMIG BBJORKMAN O.Comparison of the effect of exces-sive light on chlorophyll fluorescene (77K) and photon yield of O2 evolution of leaves of higher plants[J].Planta,1987171(2)l71-l84.

[29]BJORKMAN ODEMMI G B.Photon yield of O2evolution and chlorophyll fluorescence at 77k among vascular plants of diverse origins[J].Planta,1987,170489-504.

[30]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.

Memo

Memo:
-
Last Update: 2016-08-23