|Table of Contents|

Physiological Response of Seedlings of Five Yellow Compositae Species to Drought Stress and Their Drought Resistance(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2016年11
Page:
61-67
Research Field:
Publishing date:

Info

Title:
Physiological Response of Seedlings of Five Yellow Compositae Species to Drought Stress and Their Drought Resistance
Author(s):
LIU Min12LI Yue3JI Wenxian1LIANG Yan1ZHANG Zhi1CHEN Yang1
(1.College of Agriculture,Forestry and Life Science,Qiqihar University,Qiqihar,Heilongjiang 161006,;2.Key Laboratory of Forest Plant Ecology of Ministry of Education,Northeast Forestry University,Harbin,Heilongjiang 150040;3.College of Chemistry and Chemistry Engineering,Qiqihar University,Qiqihar,Heilongjiang 161006)
Keywords:
drought resistancemembership functiondrought stressphysiological responsewater-saving landscapeCompositae
PACS:
-
DOI:
10.11937/bfyy.201611017
Abstract:
In order to select strong drought resistance plants which were suitable for construction of water-saving landscape,five yellow compositae species(Tagetes erecta,Tagetes patula,Bellis perennis,Coreopsis drummondii,Gaillardia pulchella) were chosen as test material to study their leaves physiological responses to different degrees of drought stress and evaluate their drought resistance.The seedlings were treated with 10%,20% and 30% PEG 6000 to simulate mild,moderate and severe drought stress,respectively.Chlorophyll content,soluble protein content,proline content,plasma membrane relative permeability and MDA content of leaves were measured.The results showed that seedlings of these five plant species under three kinds of PEG concentration stress showed the same change as following:with increasing time of drought stress,the chlorophyll content continuously decreased;the soluble protein content rose initially and then fell;plasma membrane relative permeability and proline content continuously increased;the amplitude of the indicators caused by the higher concentration of PEG was larger than that by the lower concentration PEG.But the changing rules of the MDA content of five species seedlings were different.The content of MDA of T.erecta,T.patula and G.pulchella decreased followed by an increase,whereas the other two species seedling types continuously increased.Membership function analysis method was used to evaluate the drought resistance of the five seedlings.Under mild and moderate drought stress,the drought resistance of G.pulchella was the strongest,T.patula was the second,and B.perennis was the weakest.While under severe drought stress,the drought resistance of T.patula was the strongest,Gaillardia pulchella was the second,and Bellis perennis was the weakest.

References:

 

[1]十八大报告辅导读本编写组.十八大报告辅导读本[M].北京:人民出版社,2012.

[2]王喜宁,武春阳,孙亚楠,.长春市城市土壤特性研究[J].内蒙古农业科技,2011(3):35-37.

[3]毛洪玉,祝朋芳,何小雨.地被菊的抗寒性和光照栽培试验[J].辽宁农业科学,2004(4):46-48.

[4]杨东,张红,陈丽萍,.温度胁迫对10种菊科杂草丙二醛和可溶性糖的影响[J].四川师范大学学报(自然科学版),2007,30(3):391-394.

[5]李云,张钢,杨际双.热激锻炼对高温胁迫下菊花生理代谢的影响[J].武汉植物学研究,2008,26(2):175-178.

[6]LONG X H,LIU Z P,ZHENG Q S,et al.Effects of sea water with different concentrations on growth and physiological and biochemical characteristics of Helianthus tuberosus seedlings[J].Acta Ecologica Sinica,2005,25(8):1881-1889.

[7]吴成龙,周春霖,尹金来,.碱胁迫对不同品种菊芋幼苗生物量分配和可溶性渗透物质含量的影响[J].中国农业科学,2008,41(3):901-909.

[8]田治国,王飞,张文娥,.多元统计分析方法在万寿菊品种抗旱性评价中的应用[J].应用生态学报,2011,22(12):3315-3320.

[9]田治国,王飞,张文娥,.万寿菊属不同品种初花期抗旱特性分析[J].西北植物学报,2011,31(7):1390-1399.

[10]ZHANG M D,CHEN Q,SHEN S H.Physiological responses of two Jerusalem Artichoke cultivars to drought stress induced by polyethylene glycol[J].Acta Physiol Plant,2011,33:313-318.

[11]RUTTANACHIRA R,PORAMATE B,SANUN J,et al.Genotypic variability for tuber yieldbiomass and drought tolerance in Jerusalem Artichoke germplasm[J].Turkish Journal of Agriculture and Forestry,2014,38:570-580.

[12]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2000.

[13]李仁所.模糊数学[M].泰安:山东农业大学出版社,1998:93-94.

[14]辛国荣,董美玲,宋淑明.牧草抗旱性研究2水分胁迫下8种燕麦品种的抗旱性综合评价[J].草业科学,1996,13(6):30-34.

[15] 王宇超,王得祥,彭少兵,.干旱胁迫对木本滨藜生理特性的影响[J].林业科学,2010,46(1):61-67.

[16]常福辰,陆长梅,沙莎.植物生物学实验[M].南京:南京师范大学出版社,2007:156-157.

[17]WU F Z,BAP W K,LI F L,et al.Effects of drought stress and N supply on the growthbiomass partitioning and water use efficiency of Sophora davidii seedlings[J].Environmental and Experimental Botany,2008,63:248-255.

[18]初晓辉,刀丽琼,谢堂民,.马蹄金草坪草对干旱胁迫的生理响应研究[J].草地学报,2014,22(1):134-138.

[19]范苏鲁,苑兆和,冯立娟,.干旱胁迫对大丽花生理生化指标的影响[J].应用生态学报,2011,22(3):651-657.

[20]孔德政,于红芳,李永华,.干旱胁迫对不同品种菊花叶片光合生理特性的影响[J].西北农林科技大学学报(自然科学版),2010,38(11):103-108.

[21]吴嘉雯,王庆亚.干旱胁迫对野生和栽培蒲公英抗性生理生化指标的影响[J].江苏农业学报,2010,26(2):264-271.

[22]吴志华,曾富华,马生健,.ABAPEG胁迫下狗牙根可溶性蛋白质的影响[J].草业学报,2004,13(5):75-78.

[23]康俊梅,杨青川,樊奋成.干旱对苜蓿叶片可溶性蛋白的影响[J].草地学报,2005(9):199-202.

[24]刘红云,梁宗锁,刘淑明,.持续干旱及复水对杜仲幼苗保护酶活性和渗透调节物质的影响[J].西北林学院学报,2007,22(3):55-59.

[25]田治国.万寿菊属植物耐热性与抗旱性的评价及生长生理特性的研究[D].杨凌:西北农林科技大学,2012.

[26]张学昆,范其新,陈洁,.不同耐湿基因型甘蓝型油菜苗期对缺氧胁迫的生理差异响应[J].中国农业科学,2007,40(3):485-491.

[27]吕金印,郭涛.水分胁迫对不同品种甜高粱幼苗保护酶活性等生理特性的影响[J].干旱地区农业研究,2010,28(4):89-93.

[28]万里强,石永红,李向林,.PEG胁迫下3个多年生黑麦草品种抗性生理研究[J].草地学报,2009,17(4):440-444.

[29]尹永强,胡建斌,邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J].中国农学通报,2007,23(1):105-110.

[30]张智猛,万书波,戴良香,.花生抗旱性鉴定指标的筛选与评价[J].植物生态学报,2011,35(1):100-109.

[31]罗丹,陈红跃,刘乾.5种屋顶绿化植物抗旱性研究[J].广东林业科技,2009,25(6):81-85.

[32]王勇,韩蕊莲,梁宗锁.水分胁迫对4种菊科蒿属植物抗氧化特性的影响[J].西北农林科技大学学报(自然科学版),2010,38(10):178-186.

[33]孙静,曾俊,王银杰,.20个切花菊品种抗旱性评价与筛选[J].南京农业大学学报,2013,36(1):24-28.

[34]魏秀俭.玉米自交系苗期耐旱性鉴定指标的模糊综合评价[J].聊城大学学报(自然科学版),2005,18(1):45-48.

[35]王俊刚,陈国仓,张承烈.水分胁迫对2种生态型芦苇的可溶性蛋白含量、SODPODCAT活性的影响[J].西北植物学报,2002,22(3):561-565.

Memo

Memo:
-
Last Update: 2016-07-14