|Table of Contents|

Physiological Response of Celery (Apium graveolens L.) to Cadmium Stress by FTIR Spectroscopy(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2015年15
Page:
11-16
Research Field:
Publishing date:

Info

Title:
Physiological Response of Celery (Apium graveolens L.) to Cadmium Stress by FTIR Spectroscopy
Author(s):
HU Bohua1XU Jie1DUAN Dechao2CHEN Qin1GE Tao1
(1.College of Biological,Chemical Sciences and Engineering,Jiaxing University,Jiaxing,Zhejiang 314001;2.Bestwa Environmental Protection Sci-Tech Co.Ltd.,Hangzhou,Zhejiang 310015)
Keywords:
cadmium stressfourier transform infrared spectrumchemical compositioncelery
PACS:
-
DOI:
10.11937/bfyy.201515003
Abstract:
Cd is a highly toxic and highly water soluble element without biological function,which tends to enter the food chain,adversely affecting human health once released into the environment.Celery (Apium graveolens L.) is widely planted as a popular vegetable in our country,and has certain accumulation ability for Cd.In the present study,fourier transform infrared (FTIR) spectrometry was used to investigate the physiological changes in chemical composition of celery exposed to solution containing different Cd2+ concentration (0,5,10,20,40 mg/L).The results showed that after an initial decline,the A/A2 931value of the dominant infrared bands near 3 410 cm-1,1 636 cm-1,1 389 cm-1and 1 065 cm-1 in both roots and stems increased at first and then decreased.This indicated that there was almost no effect on physiological processes of the roots and the stems with low Cd2+ concentration,while at medium Cd2+ concentration the roots and the stems were promoted to coalesce,secret and transport organics (carbohydrates,amino acids,proteins,carbohydrates),and with high Cd2+ concentration the secretion and transportation of the organics were inhibited.Meanwhile,the methylated pectin in cell wall of the roots and the stems increased,and the peroxide products of ketones in cells of the roots and the stems decreased.The A/A2 931value of the dominant infrared bands in the leaves showed a gradually rising trend,which indicated that the stress resistance of the leaves to Cd2+ increased with the Cd2+ concentration increased.As a result,FTIR technique could be accepted as a way to study the physiological mechanism of plant for adapting to the stress of heavy metals.

References:

 

[1]黄勇,郭庆荣,任海,.珠江三角洲典型地区蔬菜重金属污染现状研究[J].生态环境,2005,14(4):559-561.

[2]BAKER M JTREVISAN JBASSAN Pet al.Using fourier transform IR spectroscopy to analyze biological materials[J].Nature Protocols,2014,9(8):1771-1791.

[3]郑国璋.农业土壤重金属污染研究的理论与实践[M].北京:中国环境科学出版社,2007.

[4]IKE ASRIPRANG RONO Het al.Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes[J].Chemosphere,2007,9(66):1670-1676.

[5]鲁如坤,时正元,雄礼明.我国磷矿磷肥中镉的含量及其生态环境影响的评价[J].土壤学报,1992,29(2):150-157.

[6]刘荣乐,李书田,王秀斌,.我国商品有机肥料和有机废弃物中重金属的含量状况与分析[J].农业环境科学学报,2005,24(2):392-397.

[7]WANG K R.Tolerance of cultivated plants to cadmium and their utilization in polluted farm land soils[J].Acta Biotechnologica,2002,22(1-2):189-198.

[8]崔力拓,耿世刚,李志伟.我国农田土壤镉污染现状及防治对策[J].现代农业科技,2006(11):184-185.

[9]梁文斌,薛生国,沈吉红,.锰胁迫对垂序商陆叶片形态结构及叶绿体超微结构的影响[J].生态学报,2011,31(13):3677-3683.

[10]程存归,郭水良,陈建华.香茶菜属3种植物不同器官红外光谱-排序的比较[J].光谱学与光谱分析,2002,22(6):954-958.

[11]顾艳红,刘鹏,蔡琪敏,.FTIR结合生理特性研究镉胁迫对果灰藓的影响[J].光谱学与光谱分析,2009,29(3):620-623.

[12]付川,余顺慧,黄怡民,.紫花苜蓿对铜胁迫生理响应的傅里叶变换红外光谱法研究[J].生态学报,2014,34(5):1149-1155.

[13]薛生国,朱锋,叶晟,.紫茉莉对铅胁迫生理响应的FTIR研究[J].生态学报,2011,31(20):6143-6148.

[14]段敏,马往校,李岚.17种蔬菜中铅铬镉元素含量分析研究[J].干旱区资源与环境,1999,13(4):74-80.

[15]廖琴,王胜利,南忠仁,.干旱区绿洲土壤中CdPbZnNi复合污染对芹菜的影响及其富集迁移规律[J].干旱区资源与环境,2011,25(7):173-177.

[16]陆婉珍,袁洪福,徐广通,.现代近红外光谱分析技术[M].北京:中国石化出版社,2000.

[17]赵藻藩,周性尧,张悟铭,.仪器分析[M].北京:高等教育出版社,1990.

[18]王瑞云,任有蛇,岳文斌,.低温胁迫对苜蓿幼苗存活及生理生化指标的影响[J].激光生物学报,2006,15(4):342-348.

[19]孟朝妮,刘成,贺军民,.增强UV-B辐射、NaCl胁迫及其复合处理对小麦幼苗光合作用及黄酮代谢的影响[J].光子学报,2005,34(12):1868-1871.

[20]张晓斌,刘鹏,李丹婷,.铬诱导植物根细胞壁化学成分变化的FTIR表征[J].光谱学与光谱分析,2008,28(5):1067-1070.

[21]CLEMENS S.Molecular mechanisms of plant metal tolerance and homeostasis[J].Planta,2001,212(4):475-486.

[22]PAN W,SHOU J,ZHOU X,et al.Al-induced cell wall hydroxyproline-rich glycoprotein accumulation is involved in alleviating Al toxicity in rice[J].Acta Physiologiae Plantarum2011,33(2):601-608.

[23]JIANG WLIU D.Pb-induced cellular defense system in the root meristematic cells of Allium sativum L[J].BMC Plant Biology,2010,10(1):40.

[24]DIDIERJEAN LFRENDO PNASSER Wet al.Heavy-metal-responsive genes in maizeidentification and comparison of their expression upon various forms of abiotic stress[J].Planta,1996,199(1):1-8.

[25]任立民,成则丰,刘鹏,.美洲商陆对锰毒生理响应的FTIR研究[J].光谱学与光谱分析,2008,28(3):582-585.

[26]SCHMOHL NPILLING JFISAHN Jet al.Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tuberosum[J].Physiologia Plantarum,2000,109(4):419-427.

[27]薛生国,黄艳红,王钧,.采用FTIR 法研究酸模叶蓼对锰胁迫生理响应的影响[J].中南大学学报(自然科学版),2011,42(6):1528-1532.

Memo

Memo:
-
Last Update: 2015-08-18