|Table of Contents|

Cross-adaptation of Two Epiphytic Tillandsia Species to Temperature Stress(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2015年10
Page:
82-86
Research Field:
Publishing date:

Info

Title:
Cross-adaptation of Two Epiphytic Tillandsia Species to Temperature Stress
Author(s):
ZHENG Gui-lingLI Peng
(College of Resource and Environment,Qingdao Agricultural University,Qingdao,Shandong 266109)
Keywords:
air plantcross adaptationtemperaturestress
PACS:
S 682.39
DOI:
10.11937/bfyy.201510020
Abstract:
Taking Tillandsia stricta ‘Hard leaf’and Tillandsia brachycaulos‘Multiflora’as the materials,effect of temperature stress on plant morphological and physiological characters including contents of soluble sugars,soluble proteins,proline,the activities of SOD,POD and MDA content were studied.The results showed that two Tillandsia species were tolerant to low or high temperature within 5-35℃.However,under the stress of -5℃ and 45℃,two Tillandsia species began to wither,which suggested that these two temperatures were almost to or beyond the critical temperature.Moreover,contents of soluble sugars,soluble proteins,prolines,the activities of SOD,POD and MDA content decreased or increased synchronically under the low and high temperature,which indicated that two species were cross adapted to temperature stress,i.e.cross-adaptation.

References:


[1]Knight H,Knight M R.Abiotic stress signaling pathways:specificity and cross talk[J].Trends of Plant Science,2001,6:262-267.
[2]Fu P,Wilen R W,Robertson A J,et al.Heat tolerance of cold acclimation puma winter rye seedlings and the effect of a heat shock on freezing tolerance[J].Plant and Cell Physiology,1998,39:942-949.
[3]Collins G G,Nie X L,Saltveit M E.Heat shock proteins and chilling sensitivity of mung bean hypocotyls[J].Journal of Experiment Botany,1995,46:795-802.
[4]Gong M,Chen B,Li Z G,et al.Heat shock induced cross adaptation to heat,chilling,drought and salt stress in maize seedlings and involvement of H2O2[J].Journal of Plant Physiology,2001,158:1125-1130.
[5]Benzing D H.Bromeliaceae:profile of an adaptive radiation[M].Cambridge:Cambridge University Press,2000.
[6]郑桂灵,李鹏.气生植物的生物学特性及研究展望[J].生物学杂志,2009,26(5):56-62.
[7]Martin C E.Physiological ecology of the Bromeliaceae[J].Botanical Review,1994,60:1-82.
[8]Larkindale J,Hall J D,Knight M R.Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of the rmotolerance[J].Plant Physiology,2005,138:882-897.
[9]俞禄生,张蕾,丁久玲,等.不同低温处理对5个空气凤梨品种生长特性的影响[J].安徽农业大学学报,2011,38(1):118-122.
[10]刘祖祺,张石诚.植物抗性生理学[M].北京:中国农业出版社,1994.
[11]张俊环,黄卫东.植物对温度逆境的交叉适应性及其机制研究进展[J].中国农学通报,2003,19(2):95-100.
[12]马德华,庞金安,李淑菊,等.温度逆境锻炼对高温下黄瓜幼苗生理的影响[J].园艺学报,1998,25(4):350-355.
[13]张鸽香.瓜叶菊对低温胁迫的生理反应[J].南京林业大学学报(自然科学版),2004,28(5):89-92.
[14]王利军,李绍华,李家永,等.温度逆境交叉适应对葡萄叶片膜脂过氧化和细胞钙分布的影响[J].植物生态学报,2004,28(3):326-332.
[15]王毅,杨宏福,李树德.园艺植物冷害和抗冷性的研究[J].园艺学报,1994,21(3):239-244.
[16]张石城.植物的抗寒生理[M].北京:农业出版社,1990:25-35.
[17]王思维,郑桂灵,付英,等.气生凤梨叶片结构研究[J].植物研究,2010,30(2):140-145.
[18]Pierce S,Maxwell K,Griffiths H.Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae[J].American Journal of Botany,2001,88:1371-1389.

Memo

Memo:
-
Last Update: 2015-08-07