|Table of Contents|

Research Prospects in Ecological Stoichiometry Characteristics of Carbon,Nitrogen and Phosphorus in Larix principis rupprechtii Plantation of Qinling Mountains(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2014年17期
Page:
197-203
Research Field:
Publishing date:

Info

Title:
Research Prospects in Ecological Stoichiometry Characteristics of Carbon,Nitrogen and Phosphorus in Larix principis rupprechtii Plantation of Qinling Mountains
Author(s):
ZHAO Ya-fang12XU Fu-li13WANG Wei-ling3
1.Institute of Soil and Water Conservation,Chinese Academy of Sciences,Ministry of Water Resources,Yangling,Shaanxi 712100;
2.Universityof Chinese Academy of Sciences,Beijing 100049;
3.Northwest Agriculture and Forestry University,Yangling,Shaanxi 712100
Keywords:
Larix principis rupprechtiiplantationCNP contentEcological Stoichiometry
PACS:
S718.5
DOI:
-
Abstract:
Ecological Stoichiometry is an emerging ecological research field in recent years.The relationship between soil nutrient element and plant interactions through discussions on the characteristics of C,N,P ecological stoichiometry can be better revealed.The study on ecological stoichiometry of plant nutrition and forest ecosystems internationally were introduced in this paper firstly.Secondly,current situation of ecological stoichiometry in tree nutrient and the main research results of Larix gmelinii in China were emphatically reviewed.Meanwhile,several scientific problems in Larix principis-rupprechtii plantation were advanced,and the research on ecological stoichiometry characteristics of C,N and P in Larix principis-rupprechtii plantation of Qinling Mountains was look ahead.Then the measures and methods to be further taken on the study of ecological stoichiometry characteristics of C,N and P in Larix principis-rupprechtii plantation of Qinling Mountains with an aim to promote this discipline of research in China was put forward.

References:

[1]Michaels A F.The Ratios of Life[J].Science,2003,300(5621):906-907.

[2]Reich P B,Tjoelker M G,Machado J L,et al.Universal scaling of respiratory ?metabolism,size and nitrogen in plants[J].Nature,2006,439(7075):457-461.
[3]曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索[J].植物生态学报,2005,29(6):1007-1019.
[4]Sterner R W,Elser J J.Ecological stoichiometry:the biology of elements from molecules to the biosphere[M].Princeton University Press,2002.
[5]曲浩,赵学勇,赵哈林,等.陆地生态系统凋落物分解研究进展[J].草业科学,2010,27(8):44-51.
[6]阎恩荣,王希华,郭明,等.浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C∶N∶P化学计量特征[J].植物生态学报,2010,34(1):48-57.
[7]杨阔,黄建辉,董丹,等.青藏高原草地植物群落冠层叶片氮磷化学计量学分析[J].植物生态学报,2010,34(1):17-22.
[8]马永跃,王维奇.闽江河口区稻田土壤和植物的C、N、P含量及其生态化学计量比[J].亚热带农业研究,2011,7(3):182-187.
[9]王俊波,马安平,王得祥,等.我国人工林经营现状与健康经营途径探讨[J].世界林业研究,2008(21):102-105.
[10]张田田,马履一,贾忠奎,等.华北落叶松幼中龄林的生物量与碳汇功能[J].东北林业大学学报,2012,40(12):32-35,39.
[11]Redfield A C.The biological control of chemical factors in the environment[J].American Scientist,1958,46(3):205-221.
[12]Chapin S F III,Matson P,Mooney H A.Principles of terrestrial ecosystem ecology[M].New York:SpringerVerlag,Inc,2002.
[13]Sardans J,RivasUbach A,Peuelas J.Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain)[J].Forest Ecology and Management,2011,262(11):2024-2034.
[14]Zhao Q,Zeng D.Diagnosis methods of N and P limitation to tree growth:A review[J].Chinese Journal of Ecology,2009(1):19.
[15]Koerselman W,Meuleman A F M.The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation[J].Journal of Applied Ecology,1996,33(6):1441-1450.
[16]王振南,杨惠敏.植物碳氮磷生态化学计量对非生物因子的响应[J].草业科学,2013(6):927-934.
[17]Zheng S X,Shang Z P.Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China[J].Trees,2007,21(3):357-370.
[18]Galloway J N,Townsend A R,Erisman J W,et al.Transformation of the nitrogen cycle:recent trends,questions,and potential solutions[J].Science,2008,320(5878):889-892.
[19]LeBauer D S,Treseder K K.Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J].Ecology,2008,89(2):371-379.
[20]Li S G,Tsujimura M,Sugimoto A,et al.Temporal variation f delta C-13 of larch leaves from a montane boreal forest in Mongolia[J].Trees-Structure and Function,2007,21(4):479-490.
[21]Fang H,Yu G,Cheng S,et al.Nitrogen-15 signals of leaf-litter-soil continuum as a possible indicator of ecosystem nitrogen saturation by forest succession and N loads[J].Biogeochemistry,2011,102(1-3):251-263.
[22]蒋婧,宋明华.植物与土壤微生物在调控生态系统养分循环中的作用[J].植物生态学报,2010(8):979-988.
[23]Porazinska D L,Bardgett R D,Blaauw M B,et al.Relationship at the aboveground-belowground interface:plants,soil biota,and soil processes[J].Ecological Monographs,2003,73,377-395.
[24]Lambers H,Raven J A,Shaver G R,et al.Plant nutrient-acquisition strategies change with soil age[J].Trends in Ecology and Evolution,2008,23:95-103.
[25]Lindahl B D,Ihrmark K,Boberg J,et al.Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest[J].New Phytologist,2007,173(3):611-620.
[26]Tateno R,Takeda H.Nitrogen uptake and nitrogen use efficiency above and below ground along a topographic gradient of soil nitrogen availability[J].Oecologia,2010,163(3):793-804.
[27]Hessen D O,gren G I,Anderson T R,et al.Carbon sequestration in ecosystems:the role of stoichiometry[J].Ecology,2004,85(5):1179-1192.
[28]Herbert D A,Williams M,Rastetter E B.A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment[J].Biogeochemistry,2003,65(1):121-150.
[29]Codispoti L A.Biogeochemical Cycles-Is the Ocean Losing Nitrate[J].Nature,1995,376(6543):724-724.
[30]Sarmiento J L,Hughes T M C,Stouffer R J,et al.Simulated response of the ocean carbon cycle to anthropogenic climate warming[J].Nature,1998,393(6682):245-249.
[31]Lenton T M,Watson A J.Redfield revisited:1.Regulation of nitrate,phosphate,and oxygen in the ocean[J].Global Biogeochemical Cycles,2000,14(1):225-248.
[32]Cleveland C C,Liptzin D.C∶N∶P stoichiometry in soil:is there a “Redfield ratio” for the microbial biomass[J].Biogeochemistry,2007,85(3):235-252.
[33]McGroddy M E,Daufresne T,Hedin L O.Scaling of C∶N∶P stoichiometry in forests worldwide:implications of terrestrial Redfield-type ratios[J].Ecology,2004,85(9):2390-2401.
[34]Jackson R B,Mooney H A,Schulze E D.A global budget for fine root biomass,surface area,and nutrient contents[J].Proceedings of the National Academy of Sciences,1997,94(14):7362-7366.
[35]Ladanai S,Agren G I,Olsson B A.Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Sweden[J].Ecosystems,2010,13(2):302-316.
[36]Ferreira V,Goncalves A L,Godbold D L,et al.Effect of increased atmospheric CO2 on the performance of an aquatic detritivore through changes in water temperature and litter quality[J].Global Change Biology,2010,16(12):3284-3296.
[37]González E,Muller E,Comín F A,et al.Leaf nutrient concentration as an indicator of populus and tamarix response to flooding[J].Perspectives in Plant Ecology,Evolution and Systematics,2010,12(4):257-266.
[38]Hofmockel K S,Gallet-Budynek A,McCarthy H R,et al.Sources of increased N uptake in forest trees growing under elevated CO2:results of a large-scale 15N study[J].[JP3]Global Change Biology,2011,17(11):3338-3350.
[39]Stevens C J,Duprè C,Dorland E,et al.The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe[J].Environmental pollution,2011,159(10):2243-2250.
[40]Zhang S B,Zhang J L,Slik J W,et al.Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment[J].Global Ecology and Biogeography,2012,21(8):809-818.
[41]Climate Change 2007:Impacts,Adaptation and Vulnerability:Working Group II Contribution to the Fourth Assessment Report of the IPCC Intergovernmental Panel on Climate Change[M].Cambridge University Press,2007.
[42]洪江涛,吴建波,王小丹.全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响[J].应用生态学报,2013,24(9):2658-2665.
[43]Luo Y,Hui D,Zhang D.Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems:a meta-analysis[J].Ecology,2006,87(1):53-63.
[44]Sardans J,Rivas-Ubach A,Peuelas J.The C∶N∶P stoichiometry of organisms and ecosystems in a changing world:A review and perspectives[J].Perspectives in Plant Ecology,Evolution and Systematics,2012,14(1):33-47.
[45]Milla R,Cornelissen J H C,van Logtestijn R S P,et al.Vascular plant responses to elevated CO2 in a temperate lowland Sphagnum peatland[J].Plant Ecology,2006,182(1-2):13-24.
[46]Novotny A M,Schade J D,Hobbie S E,et al.Stoichiometric response of nitrogen-fixing and non-fixing dicots to manipulations of CO2,nitrogen,and diversity[J].Oecologia,2007,151(4):687-696.
[47]Polley H W,Fay P A,Jin V L,et al.CO2 enrichment increases element concentrations in grass mixtures by changing species abundances[J].Plant Ecology,2011,212(6):945-957.
[48]Iversen C M,Hooker T D,Classen A T,et al.Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated CO2[J].Global Change Biology,2011,17(2):1130-1139.
[49]Marklein A R,Houlton B Z.Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems[J].New Phytologist,2012,193(3):696-704.
[50]Kirkby C A,Kirkegaard J A,Richardson A E,et al.Stable soil organic matter:a comparison of C∶N∶P∶S ratios in Australian and other world soils[J].Geoderma,2011,163(3):197-208.
[51]Peuelas J,Sardans J,Llusia J,et al.Lower P contents and more widespread terpene presence in old Bornean than in young Hawaiian tropical plant species guilds[J].Ecosphere,2011,2(4):45.
[52]Peuelas J,Sardans J,Rivas-ubach A,et al.The human-induced imbalance between C,N and P in Earth’s life system[J].Global Change Biology,2012,18(1):3-6.
[53]Cusack D F,Torn M S,McDowell W H,et al.The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils[J].Global Change Biology,2010,16(9):2555-2572.
[54]Vitousek P M,Porder S,Houlton B Z,et al.Terrestrial phosphorus limitation:mechanisms,implications,and nitrogenphosphorus interactions[J].Ecological Applications,2010,20(1):5-15.
[55]Zhang L X,Bai Y F,Han X G.Application of N∶P stoichiometry to ecology studies[J].Acta Botanica Sinica,2003,45(9):1009-1018.
[56]王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报,2008,28(8):3937-3947.
[57]贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论[J].植物生态学报,2010,34(1):2-6.
[58]程滨,赵永军,张文广,等.生态化学计量学研究进展[J].生态学报,2010,30(6):1628-1637.
[59]杨惠敏,王冬梅.草环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展[J].草业学报,2011,20(2):244.
[60]姚红艳,陈琴,肖冰雪.植物生态化学计量学综述[J].草业与畜牧,2013(2):48-50.
[61]曾冬萍,蒋利玲,曾从盛,等.生态化学计量学特征及其应用研究进展[J].生态学报,2013,33(18):5484-5492.
[62]Han W,Fang J,Guo D,et al.Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J].New Phytologist,2005,168(2):377-385.
[63]He J S,Fang J,Wang Z,et al.Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J].Oecologia,2006,149(1):115-122.
[64]任书杰,于贵瑞,陶波,等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J].环境科学,2007,28(12):2665-2673.
[65]刘兴诏,周国逸,张德强,等.南亚热带森林不同演替阶段植物与土壤中N,P的化学计量特征[J].植物生态学报,2010,34(1):64-71.
[66]吴统贵,吴明,刘丽,等.杭州湾滨海湿地3种草本植物叶片N,P化学计量学的季节变化[J].植物生态学报,2010,34(1):23-28.
[67]吴统贵,陈步峰,肖以华,等.珠江三角洲3种典型森林类型乔木叶片生态化学计量学[J].植物生态学报,2010,34(1):58-63.
[68]Zhang L X,Bai Y F,Han X G.Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol[J].Acta Botanica Sinica,2004,46(3):259-270.
[69]丁小慧,罗淑政,刘金巍,等.呼伦贝尔草地植物群落与土壤化学计量学特征沿经度梯度变化[J].生态学报,2012,32(11):3467-3476.
[70]牛得草,李茜,江世高,等.阿拉善荒漠区6种主要灌木植物叶片C∶N∶P化学计量比的季节变化[J].植物生态学报,2013,37(4):317-325.
[71]荣戗戗,刘京涛,夏江宝,等.莱州湾湿地柽柳叶片N,P生态化学计量学特征[J].生态学杂志,2012,31(12):3032-3037.
[72]刘万德,苏建荣,李帅锋,等.云南普洱季风常绿阔叶林演替系列植物和土壤C,N,P化学计量特征[J].生态学报,2010,30(23):6581-6590.
[73]王晶苑,王绍强,李纫兰,等.中国四种森林类型主要优势植物的C∶N∶P化学计量学特征[J].植物生态学报,2011,35(6):587-595.
[74]任书杰,于贵瑞,姜春明,等.中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征[J].应用生态学报,2012,23(3):581-586.
[75]张向茹,马露莎,陈亚南,等.黄土高原不同纬度下刺槐林土壤生态化学计量学特征研究[J].土壤学报,2013,50(4):818-825.
[76]刘超,王洋,王楠,等.陆地生态系统植被氮磷化学计量研究进展[J].植物生态学报,2012,36(11):1205-1216.
[77]Chen G S,Zeng D H,Chen F S.Concentrations of foliar and surface soil in nutrients Pinus spp.Plantations in relation to species and stand age in Zhanggutai sandy land,northeast China[J].Journal of Forestry Research,2004,15(1):11-18.
[78]Agren G I.The C∶N∶P stoichiometry of autotrophs-theory and observations[J].Ecology Letters,2004,7(3):185-191.
[79]阎恩荣,王希华,周武.天童常绿阔叶林演替系列植物群落的N∶P化学计量特征[J].植物生态学报,2008,32(1):13-22.
[80]丁凡,廉培勇,曾德慧.松嫩平原草甸三种植物叶片N,P化学计量特征及其与土壤N,P浓度的关系[J].生态学杂志,2011,30(1):77-81.
[81]Güsewell S,Koerselman W,Verhoeven J T A.Biomass N∶P ratios as indicators of nutrient limitation for plant populations in wetlands[J].Ecological Applications,2003,13(2):372-384.
[82]Braakhekke W G,Hooftman D A P.The resource balance hypothesis of plant species diversity in grassland[J].Journal of Vegetation Science,1999,10(2):187-200.
[83]Güsewell S.N∶P ratios in terrestrial plants:variation and functional significance[J].New Phytologist,2004,164(2):243-266.
[84]陈伏生,胡小飞,葛刚.城市地被植物麦冬叶片氮磷化学计量比和养分再吸收效率[J].草业学报,2007,16(4):47-54.
[85]Garnier E.Interspecic variation in plasticity of grasses in response to nitrogen supply.In:Cheplick G P ed.Population Biology of Grasses[M].Cambridge University Press,Cambridge,UK,1998:155-181.
[86]侯治溥.长白山林区森林立地条件及落叶松的更新[J].林业科学,1959(4):3-20.
[87]那守海,郭盛磊,阎秀峰.氮,磷处理对落叶松幼苗氮素积累和转运的影响[J].东北林业大学学报,2007,35(12):1-3.
[88]谢会成,杨茂生.华北落叶松人工林营养元素的生物循环[J].南京林业大学学报(自然科学版),2002,26(5):49-52.
[89]杨茂生,谢会成.引种的华北落叶松人工林对土壤影响的研究[J].西北林学院学报,2002,17(3):35-37.
[90]Wang W J,Qi L,Zu Y G,et al.Changes in soil organic carbon,nitrogen,pH and bulk density with the development of larch (Larix gmelinii) plantations in China[J].Global Change Biology,2011,17(8):2657-2676.
[91]周振英,宋恭诚.落叶松针叶营养元素含量和土壤条件的关系[J].林业科技,1990(4):4.
[92]孙嘉,王海燕,丁国栋,等.不同密度华北落叶松人工林土壤理化性质研究[J].林业资源管理,2011,2(1):62-66.
[93]李国雷,刘勇,吕瑞恒,等.华北落叶松人工林密度调控对林下植被发育的作用过程[J].北京林业大学学报,2009,31(1):19-24.
[94]王文新,郭景唐,陈峻崎.华北落叶松各器官营养元素分布及季节变化[J].北京林业大学学报,1992,14(增刊1):124-129.
[95]冯玉龙,敖红.长白落叶松氮素营养及与生长的关系[J].植物研究,1999,19(4):428-434.
[96]谢会成,葛云,孙居文,等.华北落叶松人工林叶内营养元素含量的变异[J].福建林学院学报,2005,25(2):163-166.
[97]李培芝.日本落叶松人工林针叶中矿质营养元素的季节吸收特点及其相互关系[J].应用生态学报,1991,2(3):207-213.
[98]张淑改,齐力旺.华北落叶松生物量及铜钼营养元素分布的研究[J].林业科技通讯,1999(4):19-21.
[99]刘广全,土小宁,史玲芳.华北落叶松树干主要营养元素的空间分布[J].生态科学,2000,19(4):16-22.
[100]宿以明,刘兴良,何飞,等.日本落叶松人工林营养元素含量,贮量与分配的研究[J].四川林业科技,2003,24(3):35-39.
[101]杨凯,朱教君,张金鑫,等.不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J].生态学报,2009,29(10):5500-5507.
[102]马炜,孙玉军,郭孝玉,等.不同林龄长白落叶松人工林碳储量[J].生态学报,2010,30(17):4659-466.
[103]罗小荷.人工林与中国林业可持续发展[J].福建林业科技,2002,29(2):69-71.
[104]李伟伟,谷建才,陈瑜,等.林分密度对华北落叶松人工林林下植被多样性影响的研究[J].中国农学通报,2009,25(6):84-88.
[105]刘澄.林分密度对华北落叶松人工林林木生长及林下植物多样性影响的研究[D].保定:河北农业大学,2008.
[106]金虎范.林分密度对华北落叶松人工林凋落物分解影响的研究[D].北京:北京林业大学,2010.
[107]杨秀云,韩有志,张芸香.距树干不同距离处华北落叶松人工林细根生物量分布特征及季节变化[J].植物生态学报,2008,32(6):1277-1284.
[108]罗云建,王效科,张小全,等.华北落叶松人工林的生物量估算参数[J].林业科学,2010,46(2):6-11.
[109]张潘.施肥对华北落叶松人工林根茎叶氮磷含量及生态化学计量规律的影响[D].北京:中国科学院研究生院(教育部水土保持与生态环境研究中心),2013.

Memo

Memo:
-
Last Update: 2014-09-26