|Table of Contents|

Changes on Antioxidant System in Fruit of Rubus spp.cv ‘Arapaho’ During the Development and Ripening Stage(PDF)

《北方园艺》[ISSN:1001-0009/CN:23-1247/S]

Issue:
2014年16期
Page:
13-16,17
Research Field:
Publishing date:

Info

Title:
Changes on Antioxidant System in Fruit of Rubus spp.cv ‘Arapaho’ During the Development and Ripening Stage
Author(s):
YANG Hai-yanZHANG Chun-hongWU Wen-longLI Wei-lin
Institute of Botany,Jiangsu Province and the Chinese Academy of Sciences,Nanjing,Jiangsu 210014
Keywords:
blackberry (Rubus spp.)fruit developmentantioxidant system
PACS:
S663.2
DOI:
-
Abstract:
Taking blackberry cultivar(Rubus spp.cv‘Arapaho’) as material,from the stage of three days after flower (DAF) to the maturation process,fruit antioxidant system of ‘Arapaho’ was investigated.The results showed that superoxide dismutase (SOD) and peroxydase (POD) activity first increased and then decreased,catalase (CAT) activity decreased gradually during the fruit development and ripening process;antiscorbic acid (AsA) and free proline (Pro) content decreased during the fruit ripening process,glutathione (GSH) content and the generation of O2 first increased and then decreased,MDA content showed no significant difference in the process of fruit development.The combination of antioxidases SOD,POD,CAT and antioxidant materials AsA,GSH,Pro played an important role to keep the balance of generating and scavenging of active oxygen in the process of fruit development,and ensure fruit to develop and mature.

References:

[1]吴文龙,李维林,闾连飞,等.不同品种黑莓鲜果营养成分的比较[J].植物资源与环境学报,2007,16(1):58-61.

[2]吴文龙,闾连飞,李维林,等.黑莓品种间杂交及与野生悬钩子种间杂交初步研究[J].东北农业大学学报,2013,44(7):123-127.
[3]Stafne E T,Clark J R.Genetic relatedness among eastern North American blackberry cultivars based on pedigree analysis [J].Euphytica,2004,139(2):95-104.
[4]Beyer W F,Fridsovich I.Assaying for superoxide dismutase activity:Some large consequences of changes in conditions [J].Analytical Biochemisty,1987,161(2):559-566.
[5]Maehly A C.Plant peroxidase[J].Methods in Enzymology,1955(2):801-813.
[6]Karsten U,Franklin L A,Lüning K.Natural ultraviolet radiation and photosynthetically active radiation induce formation of mycosporine-like amino acids in the marine macroalga Chondrus crispus (Rhodophyta)[J].Planta,1998,205(2):257-262.
[7]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2002:122-127.
[8]Anderson M E.Determination of glutathione and glutathione disulfide in biological samples[J].Method Enzymol,1985(113):545-548.
[9]罗广华,王爱国.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990(6):94-95.
[10]Heath R L,Parker L.Photoperoxidation in isolated chloroplasts I.Kinetics and stoichiometry of fatty acid peroxidation [J].Archives of Biochemistry and Biophysics,1968,125(1):189-193.
[11]Bates L E,Waldren R P,Teare I D.Rapid determination of free proline for water stress studies [J].Plant and Soil,1973,39(1):205-207.
[12]王耀晶,马聪,张薇,等.干旱胁迫下硅对草莓生长及生理特性的影响[J].核农学报,2013,27(5):703-707.
[13]Prasad M N V,Malec P,Waloszek A,et al.Physiological responses of Lemna trisulca L.(duckweed) to cadmium and copper bioaccumulation [J].Plant Science,2001,161(5):881-889.
[14]Teisseire H,Guy V.Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor) [J].Plant Science,2001,153(1):65-72.
[15]Foyer C H,Noctor G.Oxidant and antioxidant signalling in plants:A re-evaluation of the concept of oxidative stress in a physiological context [J].Plant Cell Environment,2005,28(8):1056-1071.
[16]段如雁,韦小丽,孟宪帅.不同光照条件下花榈木幼苗的生理生化响应及生长效应[J].中南林业科技大学学报,2013,33(5):30-34.
[17]Delauney A J,Verma D P S.Proline biosynthesis and osmoregulation in plant [J].Plant Journal,1993,4(2):215-223.
[18]Ashraf M,Fooland M R.Roles of glycine betaine and proline in improving plant abiotic stress resistance[J].Environmental and
Experimental Botany,2007,59(2):206-216.

Memo

Memo:
-
Last Update: 2014-09-25