[1]Thomashow M F.Plant cold acclimation:Freezing tolerance genes and regulatory mechanisms[J].Annu Rev Plant Physiol Plant Mol Biol,1999,50:571-599. [2]Ruelland E V M,Zachowski A,Vaughn H.Cold signaling and cold acclimation in plants[J].Adv Bot Res,2009,49:36-54. [3]Liu Q.Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression,respectively,in Arabidopsis[J].Plant Cell,1998,10:1391-1406. [4]Jaglo-Ottosen K R,Gilmour S J,Zarka D G,et al.Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance[J].Science,1998,280:104-106. [5]Gilmour S J,Fowler S G,Thomashow M F.Arabidopsis transcriptional activators CBF1,CBF2 and CBF3 have matching functional activities[J].Plant Mol Biol,2004,54:767-781. [6]Berardini T Z,Mundodi S,Reiser R,et al.Functional annotation of the Arabidopsis genome using controlled vocabularies[J].Plant Physiol,2004,135:1-11. [7]Stockinger E J,Gilmour S J,Thomashow M F.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE,a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J].Proc Natl Acad Sci USA,1997,94:1035-1040. [8]Gilmour S J,Zarka D G,Stockinger E J,et al.Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression[J].Plant J,1998,16:433-442. [9]Medina J,Bargues M,Terol J,et al.The Arabidopsis CBF gene family is compo-sed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration[J].Plant Physiol,1998,119:463-470. [10]Liu Q,Kasuga M,Sakuma Y,et al.Two transcription factors,DREB1 and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression,respectively,in Arabidopsis[J].Plant Cell,1998,10:1391-1406. [11]Vogel J T,Zarka D G,Van Buskirk H A,et al.Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis[J].Plant J,2005,41:195-211. [12]Novillo F,Medina J,Salinas J.Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon[J].Proc Natl Acad Sci USA,2001,104:21002-21007. [13]Hannah M A,Wiese D,Freund S,et al.Natural genetic variation of freezing tolerance in Arabidopsis[J].Plant Physiol,2006,142:98-112. [14]Alonso-Blanco C,Gomez-Mena C,Llorente F,et al.Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis[J].Plant Physiol,2005,139:1304-1312. [15]Novillo F,Alonso J M,Ecker J R.CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J].Proc Natl Acad Sci USA,2004,101:3985-3990. [16]Sung D Y,Kaplan F,Lee K J,et al.Acquired tolerance to temperature extremes[J].Trends Plant Sci,2003(8):179-187. [17]Penfield S.Temperature perception and signal transduction in plants[J].New Phytol,2008,179:615-628. [18]Chinnusamy V,Ohta M,Kanrar S.ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J].Genes Dev,2003,17:1043-1054. [19]Chinnusamy V,Zhu J,Zhu J K.Cold stress regulation of gene expression in plants[J].Trends Plant Sci,2007(12):444-451. [20]Hua J.From freezing to scorching,transcriptional responses to temperature variations in plants[J].Curr Opin Plant Biol,2009(12):568-573. [21]Miura K,Jin J B,Lee J,et al.SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J].Plant Cell,2007,19:1403-1414. [22]Lee H,Xiong L,Gong Z,et al.The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplas-mic partitioning[J].Genes Dev,2007,15:912-924. [23]Dong C H,Agarwal M,Zhang Y,et al.The negative regulator of plant cold responses,HOS1,is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J].Proc Natl Acad Sci USA,2006,103:8281-8286. [24]Knight M R,Campbell A K,Smith S M.Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium[J].Nature,1991,352:524-526. [25]Tahtiharju S,Sangwan V,Monroy A F,et al.The induction of kin genes in cold-acclimating Arabidopsis thaliana:evidence of a role for calcium[J].Planta,1997,203:442-447. [26]Henriksson K N,Trewavas A J.The effect of short-term low-temperature treatments on gene expression in Arabidopsis correlates with changes in intracellular Ca2+ levels[J].Plant Cell Environ,2003,26:485-496. [27]Monroy A F,Sarhan F,Dhindsa R S.Cold-induced changes in freezing tolerance,protein phosphorylation,and gene expression:evidence for a role of calcium[J].Plant Physiol,2003,102:1227-1235. [28]Monroy A F,Dhindsa R S.Low-temperature signal-transduction:induction of cold acclimation-specific genes of alfalfa by calcium at 25℃[J].Plant Cell,1995(7):321-331. [29]Doherty C J,Van Buskirk H A,Myers S J,et al.Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J].Plant Cell,2009,21:972-984. [30]Finkler A,Ashery-Padan R,Fromm H.CAMTAs:calmodulin-binding transcription activators from plants to human[J].FEBS Lett,2007,581:3893-3898. [31]Maruyama K,Sakuma Y,Kasuga M,et al.Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems[J].Plant J,2004,38:982-993. [32]Cook D,Fowler S,Fiehn O,et al.A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis[J].Proc Natl Acad Sci USA,2004,101:15243-15248. [33]Kaplan F,Kopka J,Sung D Y,et al.Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of?cold-regulated gene expression with modifications in metabolite content[J].Plant J,2007,50:967-981. [34]Usadel B,Blasing O E,Gibon Y,et al.Multilevel genomic analysis of the response of transcripts,enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range[J].Plant Cell Environ,2008,31:518-547. [35]Achard P,Gong F,Cheminant S,et al.The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism[J].Plant Cell,2008,20:2117-2129. [36]Harberd N P,Belfield E,Yasumura Y.The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism:how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments[J].Plant Cell,2009,21:1328-1339. [37]Achard P,Renou J P,Berthome R,et al.Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species[J].Curr Biol,2008,18:656-660. [38]Roberts D W A.Identification of loci on chromosome 5A of wheat involved in control of cold hardiness,vernalization,leaf length,rosette growth habit,and height of hardened plants[J].Genome,1990,33:247-259. [39]Achard P,Cheng H,De Grauwe L,et al.Integration of plant responses to environmentally activated phytohormonal signals[J].Science,2006,311:91-94. [40]Blazquez M A,Weigel D.Integration of floral inductive signals in Arabidopsis[J].Nature,2000,404:889-892. [41]Lee H,Suh S S,Park E,et al.The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis[J].Genes Dev,2000,14:2366-2376. [42]Onouchi H,Igeno M I,Perilleux C,et al.Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes[J].Plant Cell,2000,12:885-900. [43]Samach A,Onouchi H,Gold S E,et al.Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis[J].Science,2000,288:1613-1616. [44]Moon J,Suh S S,Lee H,et al.The SOC1 MADS-box gene integrates vernalization andal.gibberellin signals for flowering in Arabidopsis[J].Plant J,2003,35:613-623. [45]Moon J,Lee H,Kim M,et al.Analysis of flowering pathway integrators in Arabidopsis[J].Plant Cell Physiol,2005,46:292-299. [46]Seo E,Lee H,Jeon J,et al.Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC[J].Plant Cell,2009,21:3185-3197. [47]Harmer S L,Hogenesch L B,Straume M,et al.Orchestrated transcription of key pathways in Arabidopsis by the circadian clock[J].Science,2000,290:2110-2113. [48]Fowler S G,Cook D,Thomashow M F.Low temperature induction of Arabidopsis CBF1,2,and 3 is gated by the circadian clock[J].Plant Physiol,2005,137:961-968. [49]Pennycooke J C,Cheng H M,Roberts S M,et al.The low temperature-responsive,Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications,deletions,and rearrangements[J].Plant Mol Biol,2008,67:483-497. [50]Kidokoro S,Maruyama K,Nakashima K,et al.The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis[J].Plant Physiol,2009,151:2046-2057. [51]Dodd A N,Love J,Webb A A.The plant clock shows its metal:circadian regulation of cytosolic free Ca2+[J].Trends Plant Sci,2005,10:15-21. [52]Dodd A N,Jakobsen M K,Baker A J,et al.Time of day modulates low-temperature Ca signals in Arabidopsis[J].Plant J,2006,48:962-973. [53]Donga M A,Eva M.Farréb E M,et al.Circadianclock-Associated 1 and Late Elongated Hypocotyl regulate expression of the C-repeat Binding Factor (CBF) pathway in Arabidopsis[J].PNAS,2011,108:7241-7246.