水培条件下钾对大蒜幼苗生长及根系活力的影响

陈 昆,刘世琦,张自坤

(山东农业大学 园艺科学与工程学院,作物生物学国家重点实验室 山东 泰安 271018)

摘 要:以'金乡白皮蒜'为试材,采用设施水培探讨了不同 K^+ 浓度对大蒜幼苗生长及根系活力的影响。结果表明: 钾可显著增加大蒜幼苗生长量及根系活力;当营养液 K^+ 浓度为 6.0 mmol/L 时,大蒜幼苗叶长、叶宽、假茎高、假茎粗、根长及根系活力最大,绿叶数及根系数最多,大蒜幼苗叶片、假茎、鳞茎及根系干、鲜重也最大,较不施钾处理干重分别增加 133.91%、167.22%、146.31%和116.74%,鲜重分别提高 168.34%、243.18%、153.24%和128.78%。

关键词:大蒜;钾;生长;鲜重;根系活力

中图分类号: S 633.4 文献标识码: A 文章编号: 1001-0009(2011)01-0020-04

钾在植物生长发育过程中起着独特的生理生化作用。它是多种酶的活化剂,目前已知有 60 多种酶需要钾离子作为活化剂¹¹。此外,钾能促进叶绿素、蛋白质的合成,促进光合产物的合成与转运¹²⁻³³,改善叶绿体结构,提高光合速率⁴⁴,提高植物抗逆性,加速植物生长发育¹³。缺钾时植物茎杆柔弱,易倒伏,抗旱、抗寒性降低,叶片失水,蛋白质、叶绿素破坏等¹⁴。有关钾对棉花¹⁷⁻⁸³、玉米^{19-10]}等作物影响的报道较多。钾在大蒜方面的研究虽也有报道,但主要采用土壤试验探讨不同钾肥种类^{111]}、钾肥用量^{11-12]}和氮、磷和钾肥的配比^{13-14]}及钾硫配施^{15]}对大蒜生长及品质的影响。现以水培方式,系统探讨营养液不同浓度 K⁺对大蒜幼苗生长发育、干重、鲜重及根系活力的影响,以期为大蒜苗期科学施肥提供量化指标,为大蒜无土高效栽培提供理论参考。

1 材料与方法

1.1 试验材料

试验以'金乡白皮蒜'为试材,于 2009 年 10 月至 2010 年 3 月在山东农业大学科技创新园进行。

1.2 试验方法

试材于 2009 年 10 月 10 日在覆盖聚乙烯无滴膜的中棚内播种,采用深液流技术(DFT)水培,以 Hoagland

第一作者简介: 陈昆(1985-), 男, 河南商丘人, 在读硕士, 现主要从 事蔬菜栽培生物学研究工作。

通讯作者: 刘世琦(1959), 男, 山东临沂人, 教授, 研究方向为蔬菜生物学。 E-mail; liusq99@sdau.edu.cn。

基金项目: 国家科技支撑计划资助项目 (2006BAD13B06-49); 山东省农业重大创新资助项目。

收稿日期: 2010-10-26

和 Arnon 营养液 [16] 为基础, 微量元素参照其通用配方。营养液用纯水配制, 每 7 d 更换 1 次, pH 控制在 5.8 ~ 6.2。用等量的 NH_4NO_3 代替配方中由 KNO_3 提供的氮素,并去除配方原有钾素, 即在所有处理去除配方所含钾素基础上, 通过单独供钾进行试验。供钾方式为: 钾由 K_2SO_4 提供, K_2SO_4 设 5 个水平, 分别为 0.1.5.3.0.4.5 和 6.0 mmol/ L 每水平种植 10 盆。为去除 K_2SO_4 造成的各处理 SO_4 含量的不一致, 在 $T_1 \sim T_5$ 处理增加 Na_2SO_4 ,浓度分别为 6.0.4.5.3.0.1.5.0 mmol/ L 而钠对大蒜影响较小可忽略不计。5 个处理营养液 K^+ 浓度依次为 0.3.0.6.0.9.0.12.0 mmol/ L (分别以 $T_1.T_2.T_3.$ T_4 和 T_5 表示)。试验用盆为 65 cm (L) \times 50 cm (W) \times 35 cm (H) 的硬质塑料大盆,每盆定植大蒜 12 株。各处理大量元素的化合物和 N.P.K.S.Ca 及 Mg 元素浓度见表 1.8

1.3 分析测定方法

播种后 161 d(3 月 20 日)对水培大蒜绿叶数、叶长、叶宽、叶片干鲜重、假茎高、假茎粗、假茎干鲜重、初始鳞茎干鲜重、根数、根长、根活及根系干鲜重进行测定。每次取样 5 株, 3 次重复。

用直尺测量叶长(植株最长叶的基部到叶尖的距离)、叶宽(植株最长叶基部的叶片宽)、假茎高(初始鳞茎上部至上端叶片与叶梢明显分界处的距离);用游标卡尺测定假茎粗(初始鳞茎向上2 cm 处最大直径)。在85°C下杀酶10 min,降至65°C将样品烘干至恒重后称重。用MP200B电子天平称叶片,假茎,鳞茎干、鲜重。根活测定采用氯化三苯基四氮唑(TTC)法¹⁷。

1.4 数据分析

试验数据采用 DPS 6.55 和 Microsoft Excel 2003 进行统计分析。

表1

营养液中大量元素及其化合物浓度

Table 1

The concentrations of macro-element and the compounds in the nutrient solution

大量元素及其化合物浓度 Concentrations of macro-element and the compounds		处理 Treatment/mmol ° L-1				
		T ₁	T ₂	T ₃	T ₄	T ₅
	Ca(NO ₃) ₂ ° 4H ₂ O	945	945	945	945	945
质量浓度 Mass concentration/mg ° L-1	$\mathrm{NH_{4}H_{2}PO_{4}}$	115	115	115	115	115
	$\mathrm{NH_4NO_3}$	240	240	240	240	240
	$MgSO_4$ ° $7H_2O$	493	493	493	493	493
	Na_2SO_4	852. 2	639. 2	426. 1	213. 1	0
	K_2SO_4	0	261.4	522.8	784. 2	1 045.6
	N	15.0	15.0	15.0	15. 0	15.0
	P	1.0	1.0	1.0	1.0	1.0
物质的量浓度	S	8.0	8.0	8.0	8.0	8.0
Molar ratio/ mmol $^{\circ}$ L $^{-1}$	Ca	4.0	4.0	4.0	4.0	4.0
	М д	2.0	2.0	2.0	2.0	2.0
	K	0	3.0	6.0	9.0	12.0

2 结果与分析

2.1 钾对水培大蒜幼苗叶片生长及干、鲜重的影响

从表 2 可看出 随着营养液 K^+ 浓度的升高, 大蒜叶片绿叶数、叶长、叶宽及干、鲜重均增加, 至 K^+ 浓度 6.0 mmol L时达最大, 较不施钾处理分别提高 57.98%、

46.54%、33.65%、133.91%及 168.34%,差异显著。说明 $6.0 \, \text{mmol/L}$ 的 K^+ 浓度有利于大蒜幼苗叶片生长健壮,有利于叶片光合面积的增大,为大蒜后期高产奠定了物质基础。

表2

钾对水培大蒜幼苗叶片生长及干、鲜重的影响

Table 2 Effect of potassium in nutrient solution on growth dry and fresh weight of garlic leaf at seedling state

处理	叶数	叶长	叶宽	叶片鲜重	叶片干重
Treatment	Leaves/片	Leaf length/cm	Leaf width/cm	Fesh leaf weight∕g	Dry leafweight/g
T_1	6. 33℃	47. 70eC	3. 15dC	27. 10dC	2.78eC
T_2	6. 67b cBC	61.50bB	3.73dB	46.49cBC	5. 51bB
T_3	10.00aA	69. 90aA	4. 21aA	63. 39 aA	7. 46aA
T_4	8.67abAB	67. 23aA	4.07bA	55. 53b AB	6. 83aA
T ₅	7. 67b cBC	57. 50bB	3.76cB	42.35℃	5. 51bB

注:同列数据后不同小写或大写字母表示5%或1%显著水平。下同。

Note: Different lowercase or uppercase letters in the same column mean significant difference at 5% and 1% level. The same below.

2.2 钾对水培大蒜幼苗假茎生长及干、鲜重的影响

由表 3 可知,在 K^+ 浓度 $0 \sim 6.0$ mmol/ L 范围内,大 蒜幼苗假茎高、假茎粗及干、鲜重随 K^+ 浓度的升高而增加,至 K^+ 浓度 6.0 mmol/ L 时达最大,较不施钾处理假茎高及假茎粗分别提高 56.82%和 54.49% 差异显著,干、

鲜重分别提高 167.22%及 243.18%,成倍数增加,差异极显著;当 K^+ 浓度继续升高达 $9.0 \, \text{mmol/L}$ 时,上述指标则呈降低趋势。 施钾能显著增加大蒜幼苗假茎生长量及干、鲜重,但当 K^+ 浓度达 $9.0 \, \text{mmol/L}$ 时,大蒜幼苗假茎的生长量则下降。

表3

钾对水培大蒜幼苗假茎生长及干、鲜重的影响

Table 3 Effect of potassium in nutrient solution on growth, dry and fresh weight of garlic pseudostem at seedling state

	假茎高	假茎粗	假茎鲜重	假茎干重
Treatment	Pseudostem height/cm	Pseudo stem diameter/cm	Pseudostem fresh weight/g	Pseudo stem dry weight/ g
T_1	17.95eD	1.67dD	22. 33dC	1. 76dD
T_2	22.00dC	2. 33bB	49.41beB	4. 88 bB
T_3	28. 15 aA	2.58aA	59. 67aA	6.04aA
T_4	24. 84bB	2. 42bB	52.38bAB	5.08bB
T_5	22. 80 _c C	1.89eC	44. 20cB	3.80cC

2.3 钾对水培大蒜幼苗根系生长及干、鲜重的影响

由表 4 可知, 施钾处理根系数量、根长及干、鲜重均高于不施钾处理, 增幅分别为 24. 59% ~ 41. 96%、36. 34% ~ 56. 06%、45. 83% ~ 116. 74%及 46. 76% ~

表4

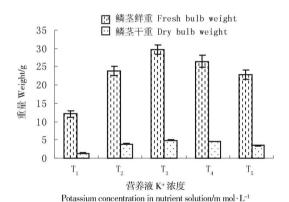

钾对水培大蒜幼苗根系生长及干、鲜重的影响

Table 4 Effect of potassium in nutrient solution on growth dry and fresh weight of garlic root at seedling state

处理	根数	根长	根鲜重	根干重
Treatment	Root number	Root length/ am	Fresh root weight/g	Dry root weight/g
T_1	91.50cB	17. 75œB	17. 98 ℃	1.39℃
T_2	117. 50bA	24. 20bA	26. 22bB	2. 07 bB
T_3	135.00aA	27. 70 ab A	41. 75aA	3. 18aA
T_4	127. 50abA	28. 10aA	38. 97aA	2. 92aA
T ₅	114.00bAB	24. 75 ab A	26. 36bB	2. 04 bB


2.4 钾对水培大蒜幼苗鳞茎干、鲜重及根活的影响

由图 1 可知, 营养液 K^+ 浓度 6.0 mmol/L 时, 大蒜初始鳞茎干、鲜重最大, 较不施钾处理分别提高 146.31%和 253.24%。在此浓度之前初始鳞茎干、鲜重随 K^+ 浓度的升高而增加 超过这一浓度达 9.0 mmol/L 时则呈降低趋势。由图 2 可知, 施钾可显著增加大蒜幼苗根系活力,与不施钾处理相比, 施钾处理 T2、T3、T4 及 T5 分别增加83.88%、195.34%、109.90%和83.88%。从图 2 还可以看出,为提高水培大蒜幼苗根系活力,以 6.0 mmol/L K^+ 浓度效果最佳。

图 1 营养液 K+浓度对鳞茎干、鲜重的影响

Fig. 1 Effect of potassium in nutrient solution on fresh and dry weight of bulb

Potassium concentration in nutrient solution/m mol·L⁻¹

图 2 营养液 K⁺浓度对大蒜幼苗根活的影响 Fig. 2 Effect of potassium in nutrient solution on root activity of seedling garlic

3 讨论与结论

该研究结果表明,在一定 K⁺ 浓度范围内, 钾能显著促进大蒜幼苗生长, 增加幼苗叶片生长量、增加叶片干、鲜重, 并以 K⁺ 浓度 6.0 mmol/L 时上述指标最佳。朱建忠等^[12] 在钾肥对大蒜植株生长的研究结果中指出, 增施钾肥大蒜株高、假茎粗、绿叶数均有所提高, 且在一定范围内随钾肥用量的增加而增加。这与其他学者类似研究的结果基本一致^[18-20]。

已有研究证明钾能促进植株高度及叶面积的增加,在棉花²¹、番茄²²等作物上均有报道。在试验中,6.0 mmol/L的K⁺浓度能较好的促进大蒜幼苗假茎生长,增加假茎粗度、干重及鲜重超过该浓度达到9.0 mmol/L时则呈降低趋势,这是因为过高的K⁺浓度可能影响各种离子(特别是钙离子和镁离子)间的平衡,影响其它矿物质的吸收。不施钾处理大蒜营养失调,严重影响大蒜生长发育,限制假茎高度、粗度、干重及鲜重的提高。

有关研究表明,大蒜对钾素营养敏感^[2324],增施钾肥对大蒜品级、植株生育性状及抗病性有明显影响^[25],能较好地改观大蒜的商品价值,增加经济效益。刘世琦等^[26]在优化施肥对大蒜的产量效应进行分析时表明,氮素对大蒜产量影响最大,钾次之,磷最小。李录久等^[27]在研究钾氮配施对大蒜生长的影响时指出,施钾对大蒜的生长发育有明显的促进作用,蒜苗及鳞茎产量较不施钾处理分别提高了29.8%~53.7%和19.8%~28.2%。该试验结果表明,大蒜幼苗初始鳞茎干、鲜重在营养液 K⁺浓度6.0 mmol/L 时最大,较不施钾处理分别增加了146.31%和253.24%,差异极显著,说明适量浓度的钾有利于光合产物向大蒜鳞茎的转运,增加鳞茎鲜重,促进干物质积累。

该研究还表明,钾可促进根系生长,增加干重、鲜重,提高根系活力,并以 K⁺ 浓度 6.0 mmol/L 时最佳,不施钾和高钾处理结果与之相反。熊明彪等^[3] 在小麦生长期土壤养分与根系活力变化及其相关性研究时,认为小麦根系活力与土壤碱解氮、速效钾、非交换性钾含量呈显著或极显著正相关,土壤 N、K 养分有效性的高低是影响小麦根系活力的重要因素,该试验结果与之一致。试验中

。试验研究。

营养液 K^+ 浓度为 6.0 mmol/ L 时,较有利于大蒜幼苗根、茎、叶及初始鳞茎生长健壮,有利于根系活力的增加。

参考文献

- [1] 吴礼树. 土壤肥料学[M]. 北京:中国农业出版社 2004. 226.
- [4] 谢建昌,周建民 Handter R. 钾与中国农业[M]. 南京: 河海大学出版社, 2000, 26-36, 185-220.
- [3] 刘晓燕, 何萍, 金继运. 钾在植物抗病性中的作用及机理的研究进展
- []]. 植物营养与肥料学报, 2006, 12(3): 445-450.
- [4] 饶立华, 薛建明 蒋德安. 钾营养对番茄光合作用和产量形成的效应
- []]. 浙江农业大学学报 1989 15(4):341.
- [5] 梁德印,徐美德 王晓琪 钾营养对棉花养分吸收和干物质积累的影响 ①.中国农业科学,1992,25(2):69-74.
- [6] 李德全,高辉远 孟庆伟.植物生理学[M] .北京:中国农业科学技术出版社 1999,40.
- [7] 房英 钾肥对棉花产量和品质的影响 J]. 植物营养与肥料学报, 1998, 4(2). 196-197.
- [8] 范希峰, 王汉霞 田晓莉, 等. 钾肥对棉花产量的影响及最佳施用量研究[J]. 棉花学报, 2006 18(3): 175-179.
- [9] 何菜 金继云,李文娟,等.施钾对高油玉米和普通玉米吸钾特性及子粒产量和品质的影响 』].植物营养与肥料学报,2005 11(5);620-626.
- [10] 谭德水,金继运,黄绍文. 长期施钾对东北春玉米产量和土壤钾素状况的影响 J. 中国农业科学 2007, 40(10): 2234-2240.
- [11] 朱建忠、吴震 程秋华、等. 苗期追肥种类和追肥量对嘉定白蒜生长发育及产量与质量的影响 J. 上海农业学报 2005, 21(1):37-40.
- [12] 朱建忠、吴震徐兰、等. 钾肥施用量对嘉定白蒜植株生长和蒜头产量及商品性的影响 J. 上海农业学报, 2005, 21(3); 29-31.
- [13] 张琳. 郭熙盛 李录久、等. 氮钾配施对大蒜增产效应的研究 JJ. 土壤 通报 2003, 34(6):539-542.
- [14] 王彩萍.磷钾肥在高寒地区大蒜上的施用效果[1].安徽农业科学,

2007, 35(17): 5215-5277.

- [15] 姜丽娜 詹长庚 符建荣 等. 钾硫对大蒜头优质高产的效应及相互 关系初探[J]. 土壤肥料 1997(1); 28-31.
- [16] Hoagland D R. The water culture method for growing plants without soil J. Calif Agr Exp Stat Circ 1950 347; 1-32.
- [17] 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京. 高等教育出版社 2006, 118-119.
- [18] 史春余,王振林 赵秉强 等. 钾营养对甘薯某些生理特性和产量形成的影响[]]. 植物营养与肥料学报 2002 8(1); 81-85.
- [19] Geiger D R Conti T R. Relation of increasing potassium nutrient of photosynthesis and translocation of carbo [J]. Plant Physiol 1983 71, 141-144.
- [20] 刘冬碧, 熊桂云, 陈防, 等. 钾素营养对莲藕生长和干物质积累的影响。]]. 中国土壤与肥料, 2009(5); 34-37.
- [21] 陈波浪,盛建东 蒋平安 等. 钾营养对水培棉花生长发育的影响[J]. 中国农学通报,2008,24(11),267-271.
- [22] 孙红梅, 李天来 须晖 等. 钾营养对保护地番茄氮钾吸收及植株生育的影响[J]. 中国蔬菜 2001(4): 14-16.
- [23] 田霄鸿, 聂刚, 李生秀. 不同土壤层次供应水分和养分对玉米幼苗生长和吸收养分的影响 J. 土壤学报 2002 33(4): 263-267.
- [24] 李录久,郭熙盛 高杰军 等. 钾氮配施对生姜产量和吸收养分的影响[J]. 土壤通报, 2004, 35(2): 263-267.
- [25] 严根元.大蒜栽培技术及综合利用[M].上海.上海科学技术文献出版社 1988, 1-95.
- [26] 刘世琦.优化施肥对大蒜产量效应分析[M].山东自然科学研究进展(上).济南:山东科技出版社 1993, 312.
- [27] 李录久,郭熙盛 张青松 等. 钾氮配施对大蒜生长和养分吸收的影响[]]. 土壤通报, 2007, 38(3); 500-503.
- [28] 熊明彪,罗茂盛 田应兵 等.小麦生长期土壤养分与根系活力变化及其相关性研究 J].土壤通报 2005(3):431-434.

Effects of Potassium in Nutrient Solution on *Allium sativum* Seedling Growth as well as Root Activity of Garlic

CHEN Kun, LIU Shi-qi, ZHANG Zi-kun

(College of Horticulture Science and Engineering, Shandong Agricultural University, Key Laboratory of Crop Biology State, Tai' an, Shandong 271018)

Abstract: In this study, 'Jinxiang White Garlic' was cultivated with solution culture to investigate the effects of five different K⁺ concentrations on *Allium sativum* seedling growth as well as root activity of garlic. The results showed that potassium could remarkably improve the *Allium sativum* seedling increment and activity of root system. The leaf length, leaf width, pseudostem height, pseudostem diameter, root activity, green leaf numbers and root numbers were largest, when K⁺ concentration was 6.0 mmol/L. And compared with 0 mmol/L K⁺, the treatment of 6.0 mmol/L K⁺ increased the dry weight of green leaves, pseudostem, bulb and root by 133.91%, 167.22%, 146.31% and 116.74%, respectively, while fresh weight of green leaves, pseudostem, bulb and root enhanced by 168.34%, 243.18%, 153.24% and 128.78%, respectively.

Key words: garlic; potassium; growth; fresh weight; root activity.