不同采收期西洋梨后熟时间及品质变化的研究

赵晨霞,李学伟,冯社章,杜金萍,赵艳霞 (北京农业职业学院,北京 102442)

摘 要: 采用西洋梨品种中的"凯斯凯德" 果实为试材, 对9月5日(T1)、9月15日(T2)、9月 25日 (T3)采收的果实各生理指标变化情况进行测定。结果表明: 20 ℃下贮藏的果实 T1、T2、T3, 分别在采收后12,10,6 d 左右完成后熟, T2 果实后熟品质较好, T1 果实较耐贮藏, T3 果实货架寿 命较短。各采收期果实在0° \mathbb{C} 贮藏60d内不会完成后熟软化过程。转入20° \mathbb{C} 后 \mathbb{T} 1果实基本失去 了正常后熟能力, T2、T3 果实与直接贮藏于 20 ℃条件下果实相比, 后熟时间均提前了 2 d 分别在 贮藏的第8.4天完成后熟过程。

关键词: 凯斯凯德: 西洋梨: 后熟: 品质变化 中图分类号·S 661.2 文献标识码·A 文章编号·1001-0009(2010)22-0001-06

"凯斯凯德"是西洋梨品系中的晚熟品种,来源于美 国, 平均单果重500 g 左右, 果实阔瓢形, 果柄粗短, 全果 着深红色。后熟以后果肉细软多汁,味香甜可口。西洋 梨贮藏后最佳后熟温度为15~21 ℃ 高于此温度果实后 熟后品质较差、腐烂增加印。

现通过对不同采收期的"凯斯凯德"果实后熟期及 后熟品质的研究,来确定不同采收期果实在 20 °C和 0 °C 下贮藏 60 d 后转入 20 ℃条件下完成后熟所需的时间。

1 材料与方法

1.1 试验材料

试验以西洋梨品种"凯斯凯德"为试材,于2009年 进行,供试西洋梨采自北京市大兴区榆垡镇御丰园生态 果业有限公司,树龄 6 a,果园管理中上等,砂十园地。

1.2 试验设计

李振茹等对4个西洋梨品种适宜采收期进行研究 后,确定北京大兴区西洋梨品种"凯斯凯德"适宜采收期 为 9 月中旬 3。该试验设 3 个不同采收期(表 1), 每个 采收期采果420个,采收时尽量选择树冠大小和树势相 对一致的 10 株树进行采样, 土壤条件和管理情况完全 相同,采收后放入塑料周转箱中,当天运抵北京农业职 业学院加工楼实验室。经 12 h 预冷后挑选果实色泽基 本一致,大小均匀,无机械损伤和病害的果实用于试验。 将每个采收期果实分成二部分,一部分果实采后贮藏于 20 ℃条件下,每隔2 d 测定其相关指标,另一部分贮藏于 0 °C条件下,每 15 d 对其生理指标测定 1 次,60 d 后转入 20 ℃条件下,每2 d测定相关指标。

表 1

西洋梨采收期和果实生长发育期

Table 1

Harvest date and fruit growth period of pear

不同采收期	采收期 Harvest time I	采收期II Harvest time II	采收期III Harvest time III
Different harvest time	(早采 T1 Early harvest T1)	(适宜T2 Suitable harvest T2)	(晚采 T3 Late harvest T3)
采收时间 Harvest date(月日)	9-5	9 15	9-25
里尔生长岩宫期 Fruit growth novind/d	139	1/18	15.9

1.3 试验方法

1.3.1 果实呼吸速率的测定 采用GXH-305型红外线 CO2 分析仪测定。用 1 040 mg/kg 的标准 CO2 气体校 准仪器,测定时环境温度为 25 ℃3,呼吸速率的单位: $CO_2 \text{ mg } \circ \text{kg}^{-1} \circ \text{h}^{-1}$.

第一作者简介: 赵晨霞(1958), 女, 北京人, 教授, 研究生导师, 研 究方向为果蔬贮藏与加工。E-mail: chenxiazhao@sina.com。 基金项目: 北京农业职业学院示范校建设院级课题资助项目。 收稿日期: 2010-08-26

1.3.2 果实乙烯的测定 乙烯的测定按张维一[4]的方 法测定,但略有改进。取5个果称重量后置于6.14 L真 空干燥器中,于20℃密闭2h后,用注射器吸取样气,抽 取 1 mL 样气用气相色谱(岛津 GC-14B 气相色谱仪测 定, 气相色谱固定相 GDX-502。 检测器为 FID, 进样口温 度 100 [℃] 柱温 80 [℃] 检测器温度 100 [℃] 载气为 N₂, H₂ 为燃气, 空气为助燃气, N2、H2 流速为 50 mL/min)测定 乙烯释放量,外标法定量。公式为:乙烯释放量(4/11)。 质量×1000)。

1.3.3 相对电导率的测定 用 HANNA EC 215 型电

导仪测定,以果肉组织圆片浸提液的相对电导率(电导率与总电导率比值)表示。

- 1.3.4 丙二醛 (MDA)含量测定 将2g 西洋梨果肉加 10 mL 的 0.2 mol/L 磷酸缓冲液 (pH 6.4) 冰浴研磨, 4° C 冰冻离心机 13 000 r/ min 离心 30 min, 取上清液, 采用硫代巴比妥酸比色法 5 1, 用紫外分光光度计测定。
- 1.3.5 果实硬度测定 果实的硬度采用 GY-B 手持硬度计测定⁶,在果实的胴体部于对角线方向取 2 组对称点去皮,重复 4 次取平均值(单位: kg/cm^2)。
- 1.3.6 VC 含量测定 采用 2, 6-二氯靛酚钠盐法测定 6 (单位; 6 6 6 (100 6).
- 1.3.7 可溶性固形物(SSC)含量测定 用 WYT 型手持 折光仪测定⁶。每个果实在测定硬度的位置同时对可 溶性固形物进行测定,重复 4 次取平均值(单位: %)。
- 1.3.8 可滴定酸(TA)含量测定 采用酸碱滴定法测定⁶,以柠檬酸百分数表示(单位: %)。
- 1.3.9 果心褐变率和褐变指数测定 每次取样 $8\sim10$ 个果实。果心褐变率=褐变果实数/总的果实数× 100%。果心褐变指数表示果心褐变的严重程度,按照果实果心褐变面积的大小,将果心褐变程度分为 5 级。0 级:无果心褐变;1 级:果心褐变面积 $0\sim5\%$;2 级:果心褐变面积 $5\%\sim10\%$;3 级:果心褐变面积 $10\%\sim20\%$;4 级:果心褐变面积大于 20%。果心褐变指数= Σ [(果心褐变级别×该级果实数目)/(最高褐变级别×总果实数)]。

2 结果与分析

- 2.1 贮藏 20℃条件下采后生理指标的变化情况
- 2.1.1 不同采收期果实呼吸速率和乙烯释放量的变化 由图 1(A)可知,3 个采收期的"凯斯凯德"果实 T1、 T2、T3,分别在采后第12、10、8天出现呼吸高峰,且成熟 度越低的果实呼吸峰值越高,之后呼吸速率则逐渐降 低 说明成熟度低的果实,生长仍在进行,表现出较旺盛 的呼吸代谢活动,随着果实逐渐成熟,果实中有机物的 积累和呼吸代谢活动减弱; T2、T3 果实都在贮藏的第 14 天出现第2次呼吸高峰,但峰值较小。由图1(B)可知, "凯斯凯德"果实乙烯释放量与呼吸速率变化规律基本 一致。在整个后熟贮藏过程中, T1 果实乙烯释放峰值 高于 T2 和 T3。但采收当天果实乙烯释放量的关系为 T3>T2>T1。贮藏过程中,由于不同采收期西洋梨果 实乙烯跃变启动时间不同, T2、T3 西洋梨果实出现乙烯 释放高峰早于 T1, 分别在采后第 10 天和第 6 天即达到 高峰, T1 高峰的出现时间则在采后第12天。由此可知, 西洋梨采收期越晚,采收时乙烯释放量越高,产生乙烯 跃变越早。这说明,呼吸速率和乙烯释放量与果实成熟 度密切相关[78]。
- 2.1.2 不同采收期果实相对电导率和丙二醛(MDA)含

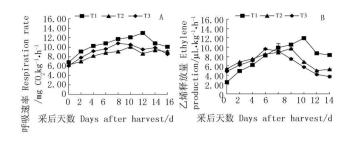
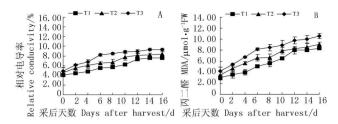
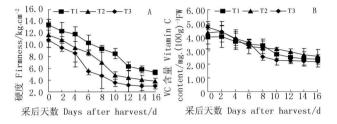



图 1 不同采收期果实呼吸速率(A)和乙烯释放量(B)的变化

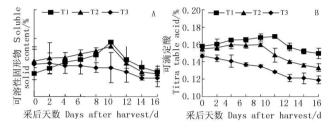
Fig. 1 The fruits of the different harvesting changes in respiration rate(A) and ethylene production(B)


量的变化 由图 2(A)可知, 20°C贮藏过程中, 不同采收期果实相对电导率均逐渐升高, T1 果实刚采收时升高较缓慢, 贮藏 12 d 后变化加快; T2、T3 果实则在刚采收时就升高较快, T2 在贮藏第 10 天果实电导率与刚采收时相比升高了 71.6%, T3 则在采后第 6 天就比刚采收时升高了 67.6%, 随后升高较缓慢。由图 2(B)可知, 不同采收期的果实 MDA 含量总体均呈上升趋势, T1 果实在贮藏前期 MDA 含量变化平缓, 在贮藏后期至贮藏结束时 MDA 含量急剧上升, 可能此时果实组织开始老化脂质过氧化作用增强, 细胞膜透性增大, 使 MDA 迅速积累; T2、T3 果实在采收初期就变化较迅速, T2、T3 果实分别在贮藏的第 10、6 天后变化趋于平缓, 这说明越早采收的果实丙二醛含量越低, 适宜采收期和晚采果实刚采收时丙二醛含量就相对较高。

2.1.3 不同采收期果实硬度和 VC 含量的变化 硬度与果品品质和耐贮性有着密切关系。由图 3(A)可 知,不同时期采收的果实硬度随着采收期的延迟而下降 较快,呈显著性差异。T1、T2、T3 果实硬度初值分别为 13.4、11.7、10.8 kg/cm²,不同采收期果实硬度初值间的 关系为: T1> T2> T3,由此可知在果实生长发育过程 中,果实硬度随着果实的成熟而降低。果实硬度随贮藏 时间的延长而逐渐降低, T1 果实硬度始终最高, T3 果实 硬度最低, T3 果实由于采收时硬度最低, 贮藏至第12天 时硬度已很低,果肉大多变绵变软,失去了商品价值。 T1、T2 果实硬度前期下降较缓慢,分别在贮藏的第 12 和第 10 天下降幅度较大, 之后变化又趋于缓慢。 VC 是 植物体内的非酶类自由基清除剂,能有效清除 02 和 H2O2, 提高SOD和POD活性、维持活性氧代谢平衡,从 而延缓果实的后熟软化。由图 3(B)可知, 刚采收时不同 采收期的果实 VC 含量不同, T3 果实 VC 含量大于 T1、 T2, 但在贮藏 6 d 后 T3 果实迅速下降, 且第 8 天时下降 到 2.55 mg/100g 之后变化缓慢; T1 果实在第 10 天时 VC 含量降至 2.74 mg/100g, 10~16 d 贮藏时间里其 VC 含量小于 T2 果实: T2 果实在贮藏的前 2 d, VC 含量呈 上升趋势,之后缓慢下降。

不同采收期果实相对导率(A)和丙二醛(B)含量的变化

Fig. 2 The fruits of the different harvesting changes in relative conductivity(A) and MDA(B)



不同采收期果实硬度(A)和 VC(B)含量的变化 Fig. 3 The fruits of the different harvesting changes in firmness(A) and VC(B)

2.1.4 不同采收期果实可溶性固形物(SSC)和可滴定 酸(TA)含量的变化 由图 4(A)可知, 西洋梨在 3个不 同采收阶段的可溶性固形物含量差异显著, 刚采收时, T1 果实淀粉含量较高, 贮藏前期由于淀粉的转化作用 而使 SSC 含量迅速上升,之后由于呼吸作用的消耗而逐 渐降低: T2 果实贮藏前期 SSC 含量变化幅度最小, 保证 了果实贮藏期间的风味; T3 果实 SSC 含量直线下降, 说 明采收时果实中淀粉大多已转化呼吸消耗较多,衰老 得较快。由图 4(B)可知, T1 果实可滴定酸含量达到一 定的峰值后均随贮藏时间的延长而逐渐下降, 而 T3 果 实可滴定酸含量直线下降,说明其果实呼吸消耗较多, 衰老得较快。可滴定酸含量直接影响果实的风味品质, 同时也是影响耐贮性的主要因素之一。相对较高的酸 性环境下,引发衰老的酶的活性较低,所以果实采收越 早, 衰老越慢。但采收过早, 酸含量太高, 会影响果实的 适口性,严重时会影响果实的后熟生理。

不同采收期果实果心褐变率和果实果心褐变指 数变化 由图 5 可知, 20℃条件下不同采收期的果实果 心褐变率和褐变指数是有差别的, 采收期与褐变率和褐 变指数密切相关。 采收越晚, 果心褐变出现的时间越 早, 褐变越严重, T3 果实在贮藏的第8天就出现了果心 褐变现象, 且褐变指数较高; T1 果实在贮藏过程中一直 没有出现果心褐变现象,这可能与其果实含酸量较高抑 制了相关酶的活性,延缓了果实的褐变速度有关: T2果 实则在第 12 天出现了果心褐变现象 但褐变指数相对 较低。

2.2 0 [℃]贮藏 60 d 后转入 20 [℃]采后生理指标变化 不同采收期果实呼吸速率的变化 由图 6(A)可 知,果实贮藏在0°的条件下,呼吸速率明显被抑制,T2、 T3 果实贮藏 15 d 时呼吸速率有上升趋势, 但是没有出 现明显的峰值,贮藏 15~60 d 时呼吸速率呈缓慢下降趋 势: T1 果实在整个低温贮藏过程中则一直呈缓慢下降 的趋势。由图 6(B)可看出,0 [°]贮藏 60 d 后转入 20 [°]的 果实 T1、T2、T3, T1 果实在贮藏的过程中一直没有出现 呼吸越变, 目呼吸速率低于 T2、T3; 果实 T2、T3 则分别 在贮藏的第8、4天出现了呼吸越变,呼吸速率分别为 9.60、9.54 mg CO₂ kg⁻¹ ° h⁻¹, 随后又迅速下降。与直 接贮藏在 20 ℃环境下的果实相比呼吸高峰的出现时间 均提前了2点且峰值相比较低。可见在低温条件下贮 藏的果实呼吸速率明显降低、转入常温贮藏后,不同采 收期的果实呼吸速率变化都受到了影响。

不同采收期果实可溶性固形物(A)和可滴定酸含量的变化 图 4 The fruits of the different harvesting changes in SSC(A) and TA (B)

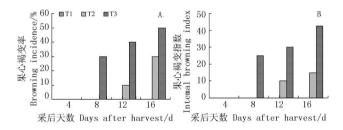
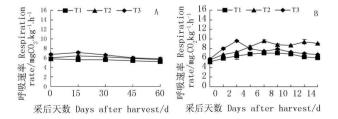
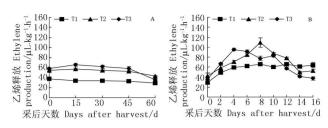



图 5 不同采收期果实果心褐变率(A) 和果心褐变指数(B) 的变化 Fig. 5 The fruits of the different harvesting changes in browning incidence and internal browning index

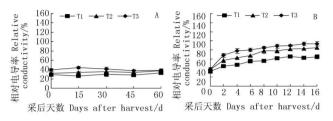
不同采收期果实在 $0^{\circ C}(A)$ 和 $20^{\circ C}(B)$ 贮藏时呼吸速率的变化

Fig. 6 The different harvesting fruit at $0^{\circ}C(A)$ and $20^{\circ}C(B)$ the changes in respiration rate during storage


不同采收期果实乙烯释放量的变化 由图 7(A)

可知, T1、T2、T3 果实在0°贮藏条件下, 乙烯释放量一直处于较低且平稳的水平, 与呼吸速率的变化相似。T1 果实乙烯释放量一直呈缓慢下降趋势; T2、T3 果实贮藏前 15 d 果实乙烯释放量呈上升趋势, 之后一直处于下降趋势, 且没有出现明显的乙烯释放峰值, 贮藏 60 d 时乙烯释放速率分别为 42.7、36.0 μL。g⁻¹。h⁻¹。由此可见 低温可以显著抑制乙烯的释放, 从而实现延缓果实后熟软化的目的。由图 7(B)可看出, 0°贮藏 60 d 后转入 20°条件下贮藏的果实 T1、T2、T3, T1 果实在贮藏的过程中一直没有出现乙烯释放高峰; 果实 T2、T3 则分别在贮藏的第 8.4 天出现了乙烯释放高峰, 与直接贮藏在20°区环境下的果实相比高峰的出现时间均提前了 2 d, 随后又迅速下降, 这又与果实在呼吸高峰的出现时间上相似。

2.2.3 不同采收期果实相对电导率的变化 由图 8(A)可知,刚采收时 T3 果实的相对电导率高于 T1、T2,且差异显著。在 0 $^{\circ}$ 贮藏的前 15 $^{\circ}$ d,T2、T3 果实相对电导率呈上升的趋势,但随着时间的延长之后又开始缓慢下降,贮藏至第 60 天时,T2、T3 果实的相对电导率分别为 37%、38%,差异不显著;T1 果实则从刚采收开始相对电导率就一直呈缓慢下降趋势。由图 8(B) 可看出,0 $^{\circ}$ 贮藏 60 d 后转入 20 $^{\circ}$ 条件下贮藏的 T1、T2、T3 果实相对电导率在整个过程中都呈缓慢上升的趋势,且开始阶段升高较快,之后则趋于平缓。 T1 果实的变化速度与 T2、T3 相比较缓慢;T3 果实变化速率明显高于 T2、T1


2.2.4 不同采收期果实丙二醛(MDA)含量的变化 由图 9(A)可知,在贮藏期间,刚采收时 T3 果实的丙二醛含量高于 T1、T2 且差异较显著。T1 果实丙二醛含量在 0 心贮藏的前 30 d,一直缓慢下降,之后则呈缓慢上升的趋势; T2 果实在整个低温贮藏过程中都呈上升趋势,但上升较缓慢;采后贮藏的前 15 d,T3 果实丙二醛含量呈上升的趋势,15 ~ 45 d 时呈缓慢下降趋势,第 60 天时含量又有所上升,但上升幅度较小。由图 9(B) 可看出,0 心贮藏 60 d 后转入 20 心条件下贮藏,T1、T2、T3 果实丙二醛含量在整个过程中都呈上升趋势,T1 果实变化较平缓,T2、T3 果实分别在贮藏的前 8、4 d 变化较显著,之后则趋于平缓。T1 果实在整个过程中丙二醛的含量与 T2、T3 相比较低。

2.2.5 不同采收期果实硬度的变化 从图 10(A) 可知,不同采收期"凯斯凯德"果实在 0 [©] 贮藏条件下,T1 果实一直呈缓慢下降趋势,贮藏 60 d 后果实硬度为 11.6 kg/cm²,显著高于 T2、T3 果实硬度。 T2 果实 0 [©] 贮藏,硬度一直缓慢下降;T3 果实从采收至贮藏 30 d,果肉硬度下降相对较快,硬度从 11.7 kg/cm² 降至 10.1 kg/cm²,之后则下降相对缓慢。由图 10(B)可看出,0 [©] 贮藏60 d 后转入 20 [©] 条件下贮藏,果实硬度在整个过程中都呈下

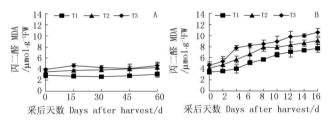

图 7 不同采收期果实在 0^{°C}(A)和 20^{°C}(B) 贮藏时乙烯释放量的变化

Fig. 7 The different harvesting fruit at 0°C(A) and 20°C(B) the changes in ethylene productiduction during storage

图 8 不同采收期果实在 0[°]C(A)和 20[°]C(B) 贮藏时相对电导率的变化

Fig. 8 The different harvesting fruit at $0^{\circ}C(A)$ and $20^{\circ}C(B)$ the changes in relative conductivity during storage

图 9 不同采收期果实在 0[°]C(A)和 20[°]C(B) 贮藏时丙二醛含量的变化

Fig. 9 The different harvesting fruit at $0^{\circ}C(A)$ and $20^{\circ}C(B)$ the changes in MDA during storage

降趋势, T1 果实下降较平缓, T2、T3 果实分别在贮藏的第6和第4天下降较快, 之后则变化相对缓慢。T1 果实在整个过程中硬度的变化与 T2、T3 相比较缓慢。

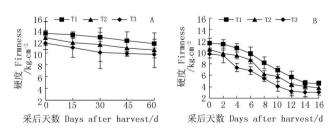
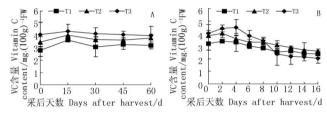



图 10 不同采收期果实在 0°C(A)和 20°C(B)贮藏时硬度的变化 Fig. 10 The different harvesting fruit at 0°C(A) and 20°C(B) the changes in firmness during storage

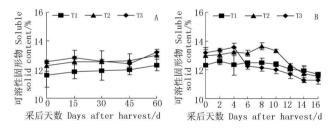
2.2.6 不同采收期果实 VC 含量的变化 由图 11(A) 可知,不同采收期"凯斯凯德"果实在 0[℃]贮藏条件下,

T1、T2、T3 果实 VC 含量在采收前 15 d 均呈上升趋势。 15~60 d 贮藏过程中, T1 果实仍一直缓慢下降, T2 果实 则在贮藏的第60天时有所升高,T3果实在贮藏的第45 天时, VC 含量有所升高, 随后缓慢降低。由图 11(B)可 知,0°贮藏60 d 后转入20°下贮藏, T1、T2果实 VC含 量在整个过程中都呈下降趋势, T3 果实则在前4 d 有所 升高,之后则开始缓慢下降。

2.2.7 不同采收期果实可溶性固形物(SSC)的变化 由图 12(A)可知,不同采收期果实可溶性固形物含量都 随采收期的推迟呈升高趋势。 T1、T2 果实在 0 ℃贮藏过 程中 SSC 含量呈缓慢上升趋势; T3 果实在贮藏的过程 中变化较大,前15 dSSC含量升高,15~45 d时呈降低 趋势, 至 60 d 时又有所升高。由图 12(B)可看出, 0 ℃贮 藏 60 d 后转入 20 ℃条件下贮藏, T1 果实在整个过程中 都呈下降趋势, T2、T3 果实则在贮藏前 8、4 d 明显升高, 之后则开始缓慢下降。

图 11 不同采收期果实在 $0^{\circ}(A)$ 和 $20^{\circ}(B)$ 贮藏时 VC 含量的变化

Fig. 11 The different harvesting fruit at 0°C(A) and 20°C(B) the changes in VC during storage



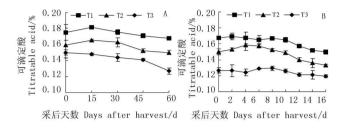
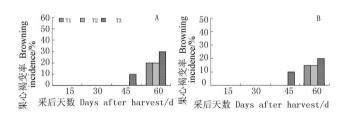

图 12 不同采收期果实在 $0^{\circ}(A)$ 和 $20^{\circ}(B)$ 贮藏时可溶性固形物含量的变化

Fig. 12 The different harvesting fruit at 0°C(A) and 20°C(B) the changes in SSC during storage

2.2.8 不同采收期果实可滴定酸(TA)的变化 13(A)可知,不同采收期的果实,在低温贮藏的过程中, 随着"凯斯凯德"果实采收期的延迟, TA 含量依次降低, 且随着贮藏时间的延长都呈逐渐下降趋势。由图 13(B) 可看出,0°贮藏60d后转入20°条件下贮藏,不同采收 期果实 TA 含量总体上均呈下降趋势, T1、T3 果实变化 较平缓, T2 果实则在贮藏的前4 d 呈上升趋势, 之后则 开始缓慢下降。


2.2.9 不同采收期果实果心褐变率和褐变指数的变化

由图 14 可知, 果实 0 ℃条件下贮藏的过程中, T3 果实 在贮藏第45天时就开始出现果心褐变现象,且T3果实 的果心褐变率和褐变指数较高; T1、T2 果实在贮藏 60 d 时才出现果心褐变,且褐变率和褐变指数相同。由图 15 可知, 转入 20 [°]条件下贮藏, T3 果实在第 4 天就出现了 果心褐变现象,且果心褐变率和褐变指数均较高。T1、 T2 果实则分别在第 8 天和第 12 天发现果心褐变果实。 果心褐变指数相比: T3>T ▷ T2。

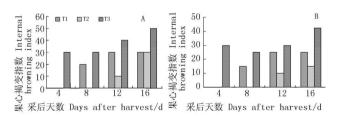

不同采收期果实在 0[°]C(A) 和 20[°]C(B)贮藏时 可滴定酸含量的变化

Fig. 13 The different harvesting fruit at $0^{\circ}C(A)$ and $20^{\circ}C(B)$ the changes in titratable acid during storage

不同采收期果实在0[℃]果心褐变率(A) 和果心褐变指数(B)的变化

Fig. 14 The different harvesting fruit at 0 °C the change in browning incidence and internal browning index

不同采收期果实在 20° 果心褐变率(A)和 果心褐变指数(B)的变化

Fig. 15 The different harvesting fruit at 20 °C the change in browning incidence and internal browning index

讨论

果实采收期的早晚与果实的产量、后熟品质有密切 关系[9]。 采收过早,果实达不到应有的品质 且产量相 对较低: 采收过晚 果实硬度较低且下降较快, 货架期缩 短,因此,关于采收期对果实的影响比较复杂。通过对 "凯斯凯德"果实分期采收后各生理指标变化情况的研

究发现, 采后直接贮藏在 20 ℃条件下的果实呼吸速率和 乙烯释放量变化规律基本一致, T1、T2、T3 果实分别在 采后第 12、10、6 天同时出现呼吸高峰和乙烯释放高峰, 且采收越早的果实呼吸峰值越高,不同采收期果实的乙 烯高峰的出现时间不同,可以说明,不同采收期西洋梨 果实乙烯跃变启动时间不同, 采收越晚, 乙烯启动时间 越早,果实的后熟期越短,这与Alique R等[10]在荔枝上 的研究结果一致:不同采收期果实相对电导率和 MDA 含量总体均呈上升趋势,且不同采收期果实间相对电导 率差异显著, 丙二醛含量则为越早采收的果实越低, T2 和 T3 果实丙二醛含量在刚采收时就已经达到较高的水 平: 研究中发现果实硬度与果品品质和耐贮性有着密切 关系,不同时期采收的果实硬度随着采收期的延迟而下 降较快,呈显著性差异。在果实生长发育过程中,果实 硬度随着果实的成熟和贮藏时间的延长而逐渐降低。 T1、T2、T3 果实硬度分别在贮藏的第 12、10、6 天以内变 化较快, 之后则相对缓慢, 贮藏到最后果实绵软严重, 部 分已经失去了商品价值;不同采收期果实 VC、SSC、TA 间差异较显著。T1 果实酸度较大,果实的适口性较差, 但贮藏过程中一直没有出现果心褐变现象。T3 果实可 溶性固形物直线下降,说明采收时果实中淀粉大多已转 化. 呼吸消耗较多,衰老较快,且较早的出现了严重的果 心褐变现象。T2 果实则在贮藏过程中保持了较好的风 味和品质,在第12天也出现了果心褐变现象,但褐变指 数较低。根据"凯斯凯德"各生理指标的变化情况可知, 20 [℃]条件下贮藏的果实 T1、T2、T3, 分别在采收后 12、 10.6 d 左右完成后熟 T2 果实后熟品质较好, T1 果实较 耐贮藏, T3 果实货架寿命较短。

贮藏在 0 [©]条件下的果实, 60 d 内呼吸速率和乙烯释放量均没有出现明显的峰值, 且各采收期间差异不显著, 相对电导率和丙二醛含量总体呈上升趋势, 但上升较缓慢, 果实硬度、VC、SSC、TA 含量均变化缓慢, 且T1、T2、T3 差异不显著。 0 [©]贮藏 60 d 后转入 20 [©]条件

下,T1果实在贮藏过程中,呼吸速率和乙烯释放量仍然没有出现明显的峰值,果实硬度降低较迟缓,其它各生理指标均变化缓慢。T2果实的呼吸速率和乙烯释放量同时在贮藏的第8天出现峰值;果实硬度在前8d下降较显著,之后则较迟缓;其它各生理指标变化相对平缓。T3果实在贮藏的第4天就出现了明显的呼吸高峰和乙烯释放峰;相对电导率和丙二醛含量均明显高于T1、T2果实;果实硬度降低较快贮藏12d时基本失去商品价值;VC、SSC含量呈先升高后降低的趋势;可TA含量变化较小。根据各生理指标的变化情况可知,各采收期果实在0°贮藏的60d内不会完成后熟软化过程,转入20°后T1果实基本失去了正常后熟的能力,T2、T3果实与直接贮藏于20°条件下的果实相比,后熟时间均提前了2d,分别在贮藏的第8、4天完成后熟过程。

参考文献

- [1] Agricultural Handbook Number 66. The Commercial Storage of Fruits [M]. Vegetables and Florist and Nursery Stocks.
- [2] 李振茹 王文辉 贾晓辉, 等. 4个西洋梨品种适宜采收期研究[J].中国果树, 2007(5): 22-25.
- [3] 宋均、于梁、利用红外线二氧化碳分析仪测定果蔬贮藏中呼吸强度的技术[1]. 植物生理学通讯。1987(6). 60 64.
- [4] 张维一, 张之菱 张友杰. 苹果气调贮藏中高 CO_2 的生理效应[3]. 园艺学报, 1982, 19(1): 19-26.
- [5] 郝再彬,植物生理实验 M].哈尔滨、哈尔滨工业大学出版社,2004.
- [6] 冯双庆 赵玉梅. 果蔬保鲜技术及常规测试方法[M]. 北京: 化学工业出版社应用化学与"三农"读物出版中心, 2001; 123-126.
- [7] Sekse L. Respiration of plum(*Prunus domestica* L.) and Sweet Cherry (*P. avium* L.) fruits during Growth and Ripering [J]. Acta Agric. Scand 1988, 38, 317-320.
- [8] Zuzunaga M, Serrano M, Valero D, et al. Responses to ethylene treatments in two plum cultivars [J]. Acta Hort., 2001, 553; 179-180.
- [9] 吴彬彬 饶景萍,李百云,等. 采收期对猕猴桃果实品质及其耐贮性的影响]]. 西北植物学报,2008,28(4):788-792.
- [10] Alique R. Oliveira G. S. Changes in sugars and orgain acids in cheminoya (*Annona cherimola*) fruit under controlled atmosphere storage[J]. Journal of A gricultural and Food chemistry, 1994, 42(3): 799-803.

Research of Ripening Time and Quality Changes of Pears Under Different Harvest Time

ZHAO Chemxia, LI Xue wei, FENG She zhang, DU Jin-ping, ZHAO Yamxia (Beijing Vocational College of Agriculture, Beijing 102442)

Abstract: Taking "Cascade" Pear fruit as materials, different harvested time on 5th September (T1), 15th September (T2), 25th September (T3) of the fruits change in physiological indicators were measured. The results showed that storage of fruit T1, T2, T3 under 20°C, the harvest time was about to complete after-ripening at 12, 10, 6 d. T2 fruit had better ripening quality, T1 fruit had storage-resistant than others, T3 fruit's shelf life was short different harvest time of fruit stored 60 d at 0°C would not complete the process of ripening and softening, T1 fruit lost it's normal ripening basic ability at 20°C, T2, T3 fruit directly stored at 20°C, compared to the fruit, ripening time were ahead of 2 days respectively, they finished their ripening on the 4th and 8th day after storage, respectively.

Key words: cascade; pear; ripening; quality change