平菇菌糠替代木屑栽培滑菇试验

赵桂云1,王伟功2,刘岩

(1. 牡丹江师范学院 生物系,黑龙江 牡丹江 157012;2. 大庆三十五中,黑龙江 大庆 163515;

3. 穆棱市第一中学, 黑龙江 穆棱 157500)

摘 要:采用平菇菌糠代替部分木屑栽培滑菇($Slippery\ mushrooms$),探讨平菇菌糠部分替代木屑栽培滑菇的可行性,以期取得合适配方。结果表明:平菇菌糠代替部分木屑栽培滑菇是可行的;且在供试配方中,配方 B(木屑 70%、菌糠 15%、麸皮 12.5%、石膏 1.5%、蔗糖 1%)与配方 C、D、A 都有显著差异,B 为适宜配方。

关键词:菌糠;栽培;滑菇

中图分类号:S 646.1+6 文献标识码:A 文章编号:1001-0009(2010)17-0209-02

1 材料与方法

1.1 试验材料

供试菌种:滑菇1号,购于牡丹江市金秋食用菌研究所。

菌糠:平菇(Pleurotus ostreatus)培养料原始配方:木屑 45%、豆秸 45%、麸皮 8%、蔗糖 1%、石膏 1%。采收 3 潮平菇后的培养料作为供试菌糠,从中认真挑选菌丝白、料块结实的菌糠块,切除霉变和腐烂部分,然后晒干,压碎(颗粒大小同锯木屑)备用。

供试配方:供试配方为 4 种:即配方 A:木屑 85%、 麸皮 12.5%、石膏 1.5%、蔗糖 1%;配方 B:木屑 70%、菌

第一作者简介:赵桂云(1951-),女,本科,教授,现从事食用菌栽培研究与教学工作。

基金项目:牡丹江师范学院科研资助项目(2009040)。

收稿日期:2010-05-06

糠 15%、麸皮 12.5%、石膏 1.5%、蔗糖 1%;配方 C:木屑 55%、菌糠 30%、麸皮 12.5%、石膏 1.5%、蔗糖 1%;配方 D:木屑 40%、菌糠 45%、麸皮 12.5%、石膏 1.5%、蔗糖 1%。

1.2 试验方法

1.2.1 培养料配制和接种 按配方称好各料。配料时 先将木屑、麸皮、石膏干混。再将糖化成糖水,用糖水拌料,逐渐加水至指缝间有水渗出又不滴下为宜。料拌好 闷 1 h 后装袋(16.5 cm \times 34 cm \times 0.05 cm 聚乙烯塑料 袋)。每袋装料 300 g,121 $^{\circ}$ 灭菌 2 h[$^{\circ}$]。

1.2.2 接种 把经过高压灭菌的培养基放在超净工作台上,用紫外灯灭菌 20 min,待料温降至 $28 \text{ \mathbb{C}}$ 以下时,向每个料袋内接入 4%的二级种。

1. 2. 3 培养 将接种后菌袋放在培养室中,用不透光的窗帘 遮光,进行避光培养,温度为 20° 左右,湿度自然 [4] 。

1.2.4 出菇管理 待菌丝长满袋后对其进行温差刺激。早上移至室外,温度为 7℃左右。晚间再移至室内,温度为 18℃左右。重复 3 d 后转移到出菇室的出菇架上,进行出菇管理^[5]。菌袋开盖后,将袋口抻开,然后用 2 层报纸盖住袋口(用报纸遮盖可减少污染并保持湿度),早晚各浇 1 次水,浇水时往报纸上浇,维持室内空气湿度为 80%以上,温度 $17\sim18$ ℃,浇水前将报纸掀开适当通风,保证出菇过程中的氧气供应。约 1 周开始现蕾。

1.2.5 采摘 通过温度、湿度、光照、通风的协调管理现 蕾的第7天开始子实体逐渐成熟。当菌盖直径不超过 3.5 cm,菌盖边缘较厚,且没开伞,柄长 4.5 cm 以内时采收。第1潮采摘后要再次进行养菌 $3\sim5$ d,待再次现蕾后管理同第1潮。采摘时,一手握住培养基,另一手从菌柄基部拧下[6]。

209

2 结果与分析

不同配方培养料栽培的滑菇产量见表 1。从表 1 可以看出滑菇在 4 种配方上的产量从高到低依次为配方 B、C、D、A。为检验不同配方上的滑菇产量差异,对其进行了方差分析,结果见表 2。

表 1 4 个配方的产量统计

7C 1				g	
	A	В	С	D	
重复Ⅰ	96.35	168.60	161.61	133, 20	
重复]]	114.20	157.34	163.20	174.00	
重复Ⅲ	120.24	139.22	148.22	125.80	
重复IV	133.80	161.50	133.10	124.18	
重复Ⅴ	92.88	158.30	147.54	96.60	
重复VI	117.50	167.70	133. 15	127.50	
重复Ⅷ	145.50	153.72	139.70	113.20	
重复Ⅷ	93.82	150.40	136.25	117.24	
重复Ⅸ	136.90	160.62	122.84	109.60	
重复※	115.80	145.40	125.40	107.48	
处理总和	1 166.99	1 562.8	1 411.01	1 228.8	
处理平均	116,699	156.28	141.101	122.88	

表 2 不同配方的产量方差分析

变异来源	平方和	自由度	均方	F 值	$F_{0.05}$	$F_{0.01}$
处理间	9 695.712	3	3 231.904	12.178**	2.866	4.377
处理内	9 553.991	36	265.3886			
总变异	19 249.7	39				

由表 2 看出, $F=12.178 > F_{0.05}(3,39)=2.866$,说明配方间差异显著; $F=12.178 > F_{0.01}(3,39)=4.377^{[7]}$,说明配方间差异极显著。表明不同配方对产量的影响较大,对此进行了多重比较,以便求得最佳配方,结果见表 3。

表 3 不同配方产量的多重比较

处理	均值	5%显著水平	1%极显著水平
В	156, 28	a	A
C	141.101	Ь	AB
D	122.88	c	BC
A	116.699	c	C

表 3 显示,0, 01 水平下,配方 B 与配方 C,配方 C 与配方 D,配方 D 与配方 A 上的滑菇产量差异均不显著;0, 05 水平下,配方 C 与配方 D,A 之间产量差异均显著,而配方 B 又与配方 C 之间产量差异显著。

3 结论与讨论

试验结果表明,从产量上看加菌糠的配方 B、C、D

均比未加菌糠的配方 A 产量高,说明平菇菌糠代替部分木屑栽培滑菇是可行的;通过进行方差分析和多重比较得出配方 B(木屑 70%、菌糠 15%、麸皮 12.5%、石膏 1.5%、蔗糖 1%)与配方 C、D、A 都有显著差异,表明配方 B 为最佳配方。

加菌糠的培养料好干不加菌糠的培养料,其原因可 能是由于木屑中主要含粗纤维,占总量的 95%,含少量 的粗蛋白,占总量的 1.5%,碳氮比较高;抗营养因子含 量过高严重影响了营养物质的有效利用。但是原有培 养基栽培食用菌后,由于底料经菌体一系列生物转化过 程成为菌糠后,粗蛋白、粗脂肪含量均比不经过食用菌 发酵前提高2倍以上,纤维素、半纤维素、木质素和抗营 养因子如棉酚等均已被不同程度的降解,其中粗纤维素 降低 50%以上,木质素降低 30%以上,棉酚降低 60%以 上,同时还产生了多种糖类、有机酸类和生物活性物 质[3]。据分析,稻草、秸秆等作物栽培食用菌后的菌糠, 粗蛋白由种菇前的 $2\% \sim 2.8\%$ 提高到 $7.2\% \sim 9.5\%$,粗 脂肪由 $0.4\% \sim 2.4\%$ 提高到了 $2.7\% \sim 6.7\%$,粗纤维由 $29.5\%\sim40.2\%$ 降低到 $15\%\sim28.2\%$,木质素由 $14.5\%\sim$ 15.1%降低到 10.9%~11.4%[2]。此外,菌糠中还含有丰 富的氨基酸、多糖及铁、钙、锌、镁等,从其碳氮比和营养 成分上看更有利于滑菇的生长,因此,用菌糠代替部分 木屑使滑菇产量得到提高。但是否有比 15% 菌糠替代 木屑更合适的比例,还有待进一步的研究。

参考文献

- [1] 郑林用.黄小琴.彭卫红. 食用菌菌康的利用[J]. 食用菌学报,2006, 13(1):74-74.
- [2] 刘守华,王翔,付雷,等. 菌糠代替粪肥栽培双孢菇高产技术[J]. 食用 菌,2002(3),15.
- [3] 王凤霞,米青山. 菌糠栽培鸡腿菇高产配方筛选初报[J]. 食用菌, 2003(2):25-26.
- [4] **黄毅**. 食用菌生产理论与实践[M]. 厦门: 厦门大学出版社, 1988: 140-141.
- [5] 陈宗泽. 食用菌栽培学[M]. 哈尔滨:哈尔滨出版社,1994:282-308.
- [6] 郑稚莺. 食用菌栽培学[M]. 哈尔滨:哈尔滨出版社,1994:307-308.
- [7] 杜荣骞. 生物统计学[M]. 北京:高等教育出版社,1999:117-128.

The Analysis of Using Bacterial Chaff of *Pleurotus ostreatus* instead of Sawdust to Cultivate *Slippery mushroom*

ZHAO Gui-yun1, WANG Wei-gong2, LIU Yan3

(1. Biology Department, Mudanjiang Teachers College, Mudanjiang, Heilongjiang 157012; 2. 35th Secondary School of Daqing, Daqing, Heilongjiang 163515; 3. No. 1 Middle School of Muling, Muling, Heilongjiang 157500)

Abstract: Through using bacterial chaff of *Pleurotus ostreatus* instead of parts of sawdust to cultivate *slippery mushroom*, we try to assess the feasibility of this way, and find out the proper formula. The results showed that it was available that the way of using bacterial chaff of *Pleurotus ostreatus* instead of sawdust to cultivate *Slippery mushroom*. In the tested formulas: the formula B(sawdust:70%, bacterial chaff:15%, wheat bran:12.5%, gypsum:1.5%, sucrose:1%) has notable difference, after compared with formula C,D,A; and was chosen as the appropriate formula.

Key words: bacterial chaff; cultivation; *Slippery mushroom*

210