杨树 SRAP-PCR 反应体系的建立与优化

陈 罡, 关 明 东, 叶 景 丰, 马 冬 菁, 潘 文 利, 刘 红 民

摘 要:以辽宁杨为材料,建立了杨树的 SRAP—PCR 扩增体系。利用单因素试验对影响扩增的 5 个组分进行了优化,确定在 25 μ L 反应体系 中: Mg^{2+} 浓度为 2.0 mmol/L、dNTPs 浓度为 0.2 mmol/L、Taq DNA 聚合酶浓度为 1.0 U、引物浓度为 0.3 μ mol/L、模板 DNA 浓度 30 ng/ μ L。利用优化后的反应体系对 17 个杨树材料进行了多态性检测,结果表明:该体系能够很好的满足杨树基因组 SRAP 扩增的要求。

关键词: 辽宁杨: SRAP: 体系优化

中图分类号: S 792.11 文献标识码: A 文章编号: 1000-0009(2010)16-0132-03

相关序列多态性分析(Sequence-related amplified polymorphism, SRAP)是一种以PCR 为基础的分子标 记技术,由美国加州大学蔬菜系 Li 等 1 于 2001 年提出, 其基本原理是通过设计一对正反引物对开放阅读框 (Open reading frames, ORFs)进行扩增,正向引物对富含 GC 的外显子进行扩增: 反向引物对富含 AT 的内含子、 启动子区域进行特异扩增,因不同个体的内含子、启动 子与间隔区长度不同而产生多态性。该标记以其操作 简便、稳定可靠、多态性高、引物具有通用性、标记分布 均匀等特点,而广泛应用于植物遗传多样性分析、种质 鉴定、遗传图谱构建、重要性状基因标记及基因定位等 诸多领域^[2]。在利用基于 PCR 反应的分子标记技术进 行分析时, DNA 样品所能扩增出条带的数量、清晰度及 稳定性影响着多态性条带的统计和分析,因此在使用 SRAP 分子标记技术时,需要先确定其最佳反应体系。 目前,对于SRAP反应体系的某些影响因素已有一些初 步研究,但在杨树中报道较少。该研究对影响 SRAP-PCR 扩增反应的 5 个组分使用浓度进行了优化, 旨在建 立稳定可靠的杨树 SRAP-PCR 反应体系, 为开展杨树分 子遗传育种研究提供技术支持。

1 材料与方法

1.1 试验材料

5月中旬从辽宁省林业科学研究院杨树丰产林基地采集辽宁杨 Populus liaoningensis 幼嫩枝条 置于冰盒中保存带回, 水培后, 剪取新生的幼嫩叶片进行 DNA

第一作者简介: 陈罡(1980), 男, 硕士, 工程师, 现主要从事林木生物技术研究工作。E-mail: chengang 1625@163.com。

基金 项目: 国家"十一五"科技支撑计划资助项目(2006BA03A1401)。

收稿日期: 2010-04-10

提取。

1.2 试验方法

1.2.1 基因组 DNA 提取 采用 CTAB 法(3) (稍加改动)提取杨树基因组 DNA。(3) 尔斯腊凝胶电泳(3) TBE)和 UV1102 紫外分光光度计检测 DNA 浓度及纯度,选出合适的样品—(2) 个保存备用。

1.2.2 SRAP-PCR 反应体系 SRAP 引物采用 Li 等 ^{1]} 已发表的序列,由北京赛百胜生物公司合成。参考 Li 等 ^{1]} 的 SRAP-PCR 反应体系,进行单因素试验,进一步分析 Mg^{2+} 、dNTP、引物、Taq DNA 聚合酶及模板 DNA 浓度对杨树 SRAP 扩增结果的影响。反应总体系为 25 μ L,设定的 5 个梯度分别为: Mg^{2+} : 1.0、1.5、2.0、2.5、3.0 mmol/ L, dNTPs:0.1、0.15、0.2、0.25、0.3 mmol/ L; Taq DNA 聚合酶 : 0.5、1.0、1.5、2.0、2.5 U; 引物 : 0.1、0.3、0.6、0.9、1.2 μ mol/ L; 模板 DNA : 3.0、15、30、60、120 ng/ μ L。通过对结果进行直观评价,确定杨树 SRAP-PCR 的最佳反应体系。以上试剂均购自北京 TIANGEN 生物有限公司。

1.2.3 SRAP-PCR 扩增程序 扩增反应均在 PTC-200型 PCR 仪(BIO-RAD)上进行。扩增程序为:94 $^{\circ}$ 预变性 5 min;94 $^{\circ}$ 变性 1 min, 37 $^{\circ}$ 气复性 1 min, 72 $^{\circ}$ 气延伸 1 min, 50 $^{\circ}$ 气复性 1 min, 72 $^{\circ}$ 气延伸 1 min, 35 个循环;最后 72 $^{\circ}$ 气延伸 8 min; -4 $^{\circ}$ 保存。PCR 扩增产物用 2%琼脂糖凝胶电泳分离 染色后在Gel-2000 凝胶成像系统上观察和记录。

1.2.4 不同杨树材料间多态性检测 在优化反应体系的基础上对 17 个杨树材料进行 SRAP 多态性检测, 扩增产物用 6%变性聚丙烯酰胺凝胶电泳分离, 电泳缓冲液为 $1\times$ TBE。电泳时先用 75 W 预电泳至 50 $^{\circ}$ 、上样后 55 W 恒定功率电泳至二甲苯青为胶板 2/3 处停止电泳后采用银染法进行染色。

2 结果与分析

2.1 杨树基因组 DNA 的提取

使用改良 CTAB 法提取杨树基因组 DNA, 白色絮 状沉淀能够完全溶解,分光光度计结果显示, A260/A280值 位于 1.7~1.9 之间。经 1%琼脂糖凝胶电泳检测(图 1) 可见条带清晰整齐: 与 Marker 对照 所得的 DNA 分子 量较大,能够满足 SRAP-PCR 扩增的要求。通过稀释一 定倍数,使其浓度在 30 ng/µL 左右。

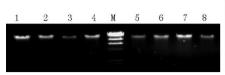


图 1 1% 琼脂糖检测基因组 DNA 质量

注 M: Marker λ DNA/ Hind III 1~8: 辽宁杨 基因组 DN A。

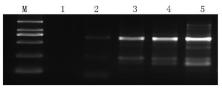
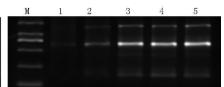
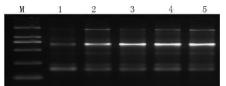
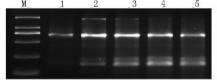



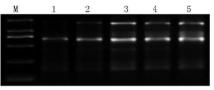
图 2 不同 Mg²⁺浓度梯度的 SRAP 扩增结果

注: M: Marker DL 2 000, 1~5: Mg2+浓度分 别为 1. 0. 1. 5、2. 0. 2. 5、3. 0 mmol/L, 引物: ME3/EM7.

不同 dN TPs 浓度梯度的 SRAP 扩增结果

注: M: Marker DL 2 000, 1~5: dNTPs 浓度 分别为 0.1、0.15、0.2.0.25、0.3 mmol/L。引物: ME3/EM7.


图 4 不同 Taq DNA 聚合酶浓度梯度 的 SRAP 扩增结果

注: M: Marker DL 2 000 1~5: Tag DNA 聚 合酶浓度分别为 0.5.1.0.1.5.2.0.2.5 U, 引物: ME3/EM7.

不同引物浓度梯度的 SRAP 扩增结果

注. M: Marker DL 2 000, 1~5. 引物浓度分别 ME3/EM7.

不同模板 DNA 浓度梯度的 SRAP 扩增结果

注: M: Marker DL 2 000, 1~5: 模板 DN A 浓 为 0. 1、0. 3、0. 6、0. 9、1. 2 \(\mu \text{mol/L} \) 引物: 度分别为 3. 0. 15、30、60. 120 ng/\(\mu \text{L} \) 引物: ME3/EM7.

2.2 SRAP-PCR 反应体系的优化

2.2.1 Mg²⁺ 浓度对 SRAP-PCR 扩增结果的影响 Mg^{2+} 是 Taq 聚合酶的激活剂, Mg^{2+} 的浓度直接影响 PCR 扩增的特异性和效率。当 Mg^{2+} 浓度过低时,酶活 力显著下降,过高时,则可能催化非特异性扩增。该试 验设定的 $5 \cap Mg^{2+}$ 浓度扩增结果见图 2,当浓度为 1.0mmol/L时,没有扩增产物,随着Mg²⁺的增加,扩增谱带 由弱到强,在浓度为2.0 mmol/L即可获得清晰的谱带。 2.2.2 dNTPs 浓度对 SRAP-PCR 扩增结果的影响 dNTPs 是 PCR 反应的底物, 浓度过低会使产率降低, 浓 度过高会导致 DNA 聚合酶错误掺入。由图 3 可知,当 dNTPs 浓度为 0.1~0.15 mmol/L 时, 扩增条带数量少 且谱带较弱, 随着 dNTPs 浓度的增加产物量也逐渐增 加 从经济角度来说 dNTPs 浓度以 0.2 mmol/ L 为宜。 2.2.3 Taa DNA 聚合酶浓度对 SRAP-PCR 扩增结果 Tag DNA 酶浓度对 PCR 产物的影响至关重 要。酶的浓度过低会使扩增产物量减少,浓度太高容易 导致非特异性扩增。该试验扩增结果见图 4, 在 0.5 U 时条带有些模糊,1~2.5 U 时带纹较清晰,从经济成本 考虑, Taq DNA 聚合酶的适宜用量为1.0 U。

2.2.4 引物浓度对 SRAP-PCR 扩增结果的影响 引物 浓度是 PCR 反应体系中一个重要的因素, 引物浓度过低 使扩增产物减少, DNA 检测条带不明显: 引物浓度过高,

会导致非特异性扩增 而且反应过剩的 2 条引物链容易 配对形成引物二聚体,从而影响靶序列的产量。从图5 可以看出,引物浓度为 0.1 Hmol/L 时扩增条带少且较 弱,随着引物浓度的增加反应产物量逐渐增加,但浓度 达到 $1.2 \,\mu_{\text{mol}}/L$ 时产物量反而减少, 所以引物用量选 择 $0.3 \mu_{\text{mol}}/L$ 。

2.2.5 模板 DNA 浓度对 SRAP-PCR 扩增结果的影响 DNA 是 PCR 扩增反应的模板, 其含量是制约扩增产 量及特异性的一个因素。该试验所采用的 5 个模板 DNA 梯度扩增结果见图 6, 当模板 DNA 浓度低于 15 ng/μL 时, 扩增条带较少且谱带较弱, 而为 120 ng/μL 时,有些条带消失并出现一定的弥散,在 30 ng/#L 时扩 增效果最佳。综合考虑以上因素, 杨树 SRAP-PCR 扩增 的最佳反应体系为:Mg²⁺浓度为2.0 mmol/L、dNTPs浓 度为0.2 mmol/L、Tag DNA 聚合酶浓度为 1.0 U、引物 浓度为0.3 \(\mu \text{mol} / L \) 模板 DNA 浓度为 30 ng/\(\mu \text{L} \).

2.3 杨树 SRAP 标记的多态性检测

利用上述建立和优化的 SRA P-PCR 扩增体系, 随机 选用 31 对 SRAP 引物对 17 个生长自辽宁不同地区的杨 树材料进行扩增,通过聚丙烯酰胺凝胶电泳及银染检 测,每个样品均能得到清晰谱带,说明优化后的扩增体 系是可行的。同时可以看出聚丙烯酰胺凝胶电泳比高 浓度琼脂糖凝胶电泳的分辨率高许多,更适合杨树遗传

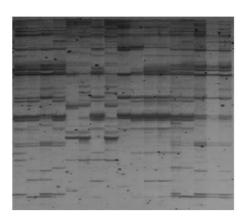


图 7 引物组合 M E3/ EM5 在不同杨树材料 中扩增出的 SRA P 条带

多样性研究中条带的检测与统计(图7)。 试验共检测到 685 个多态性条带,多态性比率为 95.3%,可见杨树的 SRAP 标记多态性水平较高。

3 结论与讨论

SRAP标记与其它基于 PCR 的分子标记相比,其独特之处在于它是对开放阅读框(ORFs)进行扩增,因此提高了扩增结果与表现型的相关性。研究表明 SRAP标记比 AFLP、RAPD 等标记更能反应表型的多样性及进化史[4-8],而且提供的信息比 AFLP 更为优良[6]。同时SRAP标记弥补了常用的分子标记的一些不足,如RAPD 重复、稳定性较差; SSR 检测位点较少,引物开发费时且成本高; AFLP 分析程序复杂、成本昂贵等,因此,SRAP标记是目前一种比较理想的分子标记技术,具有广阔的应用范围和前景。

PCR扩增结果受诸多因素影响,对于不同材料,扩增体系所用各组分的浓度也不相同。该试验最终确定的杨树 SRA P-PCR 扩增体系与前人研究结果在各组分的用量上略有差别,这表明材料来源、所用仪器及药品不同,PCR 体系中各成分的最适用量存在一定的差异。应根据自己实际所用来进行调整。该研究对影响杨树 SRA P-PCR 扩增结果的 Mg^{2+} 、dNTP、引物、Taq DNA 聚合酶及模板 DNA 浓度进行了单因素试验。试验中发现 Mg^{2+} 浓度对 SRA P-PCR 结果的影响较大,微小的变动就能引起很大变化;dNTPs、酶及引物浓度的变动对体系影响相对较小;而扩增反应对模板浓度的适应范围比较大,说明 SRA P-PCR 对模板浓度的要求不高。优化后的体系经反复验证,结果稳定可靠,能够很好的满足杨树基因组 SRA P 扩增的要求,完全适用于下一步的研究。

参考文献

- [1] Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), A new marker system based on a simple PCR reaction its application to mapping and gene tagging in Brassica [1]. Theor Appl Genet, 2001, 103, 455-461.
- [2] 姜树坤 钟鸣 徐正进 等. RAPD 标记进行水稻籼粳分类的研究[J]. 沈阳农业大学学报, 2006, 37(4); 639-641.
- [3] 陈罡, 冯健, 王骞春, 等. SRAP 标记及其在林木遗传育种研究中的应用前景[C] // 第二届中国林业学术大会—S2 功能基因组时代的林木遗传与改良论文集. 南宁, 2009, 328-332
- [4] Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucubita pepo using SRAP and AFLP markers [J]. Theor Appl Genet, 2003 107(2):271-282.
- [5] Ferriol M, Pioo B Nuez F. Genetic diversity of some accession of Cucubita maxima from Spain using RAPD and SBAP markers [J]. Genetic Resources and Crop Evolution, 2003 50(3); 227-238.
- [6] Ferriol M. Pico B. Pascual F. Molecular diversity of a germplasm collection of squash(Cucurbita moschata) determined by SRAP and AFLP marker [J]. Crop Science, 2004, 44: 653-664.

Establishment and Optimization of SRAP-PCR Reaction System in Populus

CHEN Gang, GUAN Ming-dong, YE Jing-feng, MA Dong-jing, PAN Wen-li, LIU Hong-min (Liaoning Research Academy of Forestry Sciences, Shenyang, Liaoning 110032)

Abstract: Taking $Populus \times liaoningensis$ as the experimental materials, the SRAP-PCR reaction system of Populus was established. By single factor experiments the five impact factors of SRAP were optimized. The results showed that the optimum system $(25\,\mu\text{L}\text{ volume})$ included $M\,g^{2+}$ 2.0 mmol/L, dNTPs 0.2 mmol/L, Taq DNA polymerase 1.0 U, Primer 0.3 μ mol/L, DNA template 30 ng/ μ L. Then applied this optimized reaction system to detect the polymorphism of 17 Populus materials, it was showed that this system could meet the demands for SRAP amplification in Populus.

Key words: Populus× liaoningensis; SRAP; orthogonal design; system optimization