果园种植白三叶对土壤理化性状的影响与研究

侯广太1。燕志晖2。曹

(1. 宝鸡职业技术学院, 陕西 宝鸡 721013, 2. 凤翔县蚕桑园艺工作站, 陕西 凤翔 721400)

摘 要: 针对果园土壤有机质含量低、综合生产能力不高的突出问题, 提出的果园种植白三 叶草技术,能有效提高土壤有机质含量,活化土壤,减小容重,调节土壤温湿度,肥田沃土;还能减 少水土流失,美化环境。调节气候、使土地种养结合,降本节能,对果业生产节本增收、提质增效具 有广泛的指导意义。

关键词:果园:白三叶草:土壤:理化性状 中图分类号: S 66:S 606⁺.1 文献标识码: A 文章编号: 1001-0009(2008)12-0103-03

该试验于1999~2006年在凤翔县果业中心进行。 凤翔县位于陕西省关中平原西部, 东经 107° 14′ 34″~ 107° 38'47", 北纬 34°20'43"~34°45'20", 海拔高度 595~ 1.678 m, 年平均地温 11.5°, 平均日照时数2 099.3 h, 年 平均降水量 601.6 mm, 但雨量分布不均匀, 易出现春旱 与伏旱, 秋季雨水较多。

凤翔县绿宝果业有限责任公司位于县城以北 5 km 处的大沙凹村, 现有苹果园 6.7 hm², 1999 年春季栽植, 树龄 8 a, 主栽品种礼富 1 号, 授粉品种丽嘎啦, 栽植密度 2 m×3.5 m, 667m² 栽 95 株, 苗木均为矮化中间砧, 中间 砧为 Ma。该园海拔高度 830 m, 土壤质地为砂壤土, 其 中种草园 $80 \times 667 \,\mathrm{m}^2$, 对照未种草园 $20 \times 667 \,\mathrm{m}^2$, 种草品 种为白三叶,种草时间已达8 a。

1 研究方法与数据测定

研究采用对比试验,设立种草园和不种草园两个对 照。

1.1 土壤养分的测定

采用棋盘式取样法,在种草园和未种草园各设样点 13 个, 取 0~20 cm 土层的土壤, 混匀后测定其土壤有机 质、速效氮、速效磷、速效钾的含量。

1.2 土壤容重、土壤孔隙度和土壤含水量的测定

对角线取样,设5个采样点,采样深度0~20 cm。 土壤含水量的测定采用烘干法。土壤容重的测定采用环刀 法。土壤孔隙度的计算中,土壤比重用 2.65 g/cm³。

1.3 土壤温度观测

用地温计测定 14:00 时地下 15 cm 深度处的温度, 按对角线法在果园布样点 测定结果取平均值。

1.4 十壤湿度

第一作者简介: 侯广太(1964-), 男, 陕西省宝鸡人, 本科, 讲师, 现 从事园艺教学与科研工作。E-mail; hgt1961@126.com。 收稿日期: 2008-07-23

在果园 $0 \sim 20$ cm, $20 \sim 40$ cm, $40 \sim 60$ cm, $60 \sim$ 80 cm、80~100 cm 处采集土样,测定土壤含水量,采用 随机取样,取样点各一个。

1.5 病虫害与坐果率等调查

田间调查, 在种草和未种草果园随机抽取 100 个叶 片和 200 朵花蕾, 用放大镜观察叶片上害虫数量。

1.6 枝叶生长情况调查

在种草与未种草果园随机各选3株树测量其新梢 生长长度和数量,同时在每株树上随机取 100 片叶称其 鲜重。

1.7 产量和质量调查

2006年10月,采取5点取样法。每0.6 hm² 取样1 次,每次5株树,共取样10次,调查50株,调查苹果大 小、产量与着色情况, 然后折算成公顷。

1.8 根系分布情况调查

2006 年 5 月, 在种草果园距树杆 1.0 m 处, 垂直挖 一个 1 m×1 m 的剖面, 从地表到 100 cm 深度, 每隔 20 cm 记载白三叶根数量,并测定出果树根数量。

2 果园土壤管理

未种草苹果园采用常规管理。种草苹果园从第3 年开始逐渐减少施肥量,2005年至2006年3月份穴施 尿素 50 kg, 6 月份穴施二胺 40 kg。生长季割草 2~3 次,草可覆盖树盘。种草在秋季果树行间进行。

3 结果与数据

经过多年测定,果园土壤理化性状变化见表 1~6。

4 研究与分析

4.1 果园种草可快速提高土壤有机质含量和速效养分

种草果园土壤有机质含量逐年提高,特别是种草的 前 5 a, 土壤有机质含量由原来的 8.7 g/kg 提高到 17.1 g/kg, 提高了近一倍, 增幅达到了8.4 g/kg, 2006 年土壤 有机质含量提高到了19.8 g/kg。土壤有机质含量的提 高,使土壤中迟效养分转化为速效养分的数量显著增加,1999~2006年,土壤中速效氮含量达113 mg/kg,增加了 48 mg/kg,速效磷达 67.5 mg/kg,增加了 21.2 mg/kg,速效钾达到了 298 mg/kg,增加了112 mg/kg。因此,极大的发挥了土壤自身的肥力因素,从而减少了肥料施用量,特别是减少了有机肥施用量。同时,从表 1中还可以看出,到 2006年,种草园 667 m² 含速效氮 19.5

kg 含磷 11.7 kg, 含钾 51.6 kg, 对照陕西省优质苹果生产关键技术——巧施肥的要求, 生产 100 kg 苹果需纯氮 1.0~1.1 kg, 磷 0.6~0.8 kg, 钾0.8~1.0 kg。 就试验园而言, 理论上 667 m^2 产2 500 kg 苹果, 则再需施纯氮素 5.5~8 kg 纯磷 3.3~8.3 kg, 而钾肥已完全满足了苹果树生长发育的需要, 不需再施钾肥, 这就有效的降低了肥料的施用量。

表 1

土壤有机质含量和速效养分

类别	有机质	速效氮	速效磷	速效钾	667m ² 含	667m² 含	667 m ² 含
年份	$/\mathrm{g}^{\circ}\mathrm{kg}^{-1}$	$/\mathrm{mg}^{\circ}\mathrm{kg}^{-1}$	$/\mathrm{mg}^\circ\mathrm{kg}^{-1}$	/ mg $^{\circ}$ kg $^{-1}$	速效氮/kg	速效磷 / kg	速效钾/ kg
1999	8. 7	65	46.3	186	_	_	_
2004	17. 1	98	62.4	291	_	_	_
2006	19.8	113	67.5	298	19.5	11.7	51.6

表 2

土壤 0~20 cm 深处土壤容重、孔隙度和土壤含水量

类別 「 「	容重 / g ° cm ^{−3}	孔隙度/ %	土壤自然含水量/ %	土壤重/kg°(667m²)−1	土壤含水量/ kg ° (667m²)-1
未种草	1.54	41.9	20. 1	208 516	41 911
种草	1.28	51.7	24.6	173 312	42 625
增减量	-0.26	9.8	4.5	$-35\ 204$	7 14

 $^{\circ}$

表 3 6月 21~25 日 11 时土壤 15 cm 处平均地温

脚	21 日	22 日	23 日	24 日	25 日	平均
不种草	25.8	25.7	25.4	26. 1	24.9	25.6
种草	23.8	23.5	23.4	23.9	22.9	23.5
天气	晴	晴	晴	晴	晴	

表 4 1月23~27日11时土壤15 cm 处平均地温

脚	21日	22日	23日	24日	25日	平均
不种草	2.7	2.7	3.0	2. 2	2.0	2.5
种草	5. 1	4.8	5. 1	4.5	4.3	4.8
天气	晴	晴	晴	晴	晴	

表 5

果园含水量测定

种类 土层/cm	种草区含水量/%	未种草区含水量/ %	种草区与非种草区含水量增减/%
0~20	6.93	8.01	- 15 . 58
20~40	9.18	8.29	9.69
40~60	8.50	10. 17	— 19. 64
60~80	10.09	10. 69	- 5.95
80~ 100	11.71	10. 65	9.05

表 6

果园产量和质量调查对比表

2006	午 10	日 つ	7~20	

类别	产量	果个大小\/ 个。株-1				果面着色面(个/株)				
処理	$/ \mathrm{kg} ^{\circ} (667 \mathrm{m} ^2)^{-1}$	总数	80 ♯	75 [‡]	70 [#]	60 [#]	总数	90%以上	70%以上	40%以上
未种草园	2 550	153	58	42	39	14	153	51	39	63
种草园	2 640	178	1 15	55	8	0	178	96	64	18

4.2 白三叶草与苹果树争水争肥的矛盾并不明显

通过对种草果园根系生长情况的调查表明 在0~20 cm 土层内,有草根 434 条 占草根总量的 78%,没有果树根系;在 20~40 cm 土层内,有草根 113 条,占草根总量的 20%,苹果根系 8条,占苹果树总根量的 42%;在40~60 cm 土层内,有草根 38条,占草根总量的 6.8%,苹果根系 10条,占苹果树总根量的 52.6%;在 60~80 cm 土层内,有草根 9个,占草根总量的 1.6%,无苹果根系;在 80~100 cm 土层内,无草根存在,苹果根系 1条,占苹果树总根量的 5.2%。说明白三叶草主要分布在0~20 cm 的土层内,苹果根系主要分布在 20~60 cm 土层内,两者之间避免了争肥争水的矛盾,对各自的生长相互影响不大。因此,尽管白三叶草的固氮作用改良

了土壤, 培肥了地力, 但与苹果树争肥争水的矛盾并不明显。

4.3 果园种草减小了土壤容重、增大了孔隙度

由表 2 可知, 种草园与不种草园相比, 容重减少了 0. 26 g/cm³, 孔隙度增大了 9. 8%, 自然含水量增加了 4.5%, 土壤重量减少了 35 204 kg/667m², 土壤含水量增加了 714 kg/667m²。这说明通过种草疏松土壤的作用十分明显, 这一方面是因为白三叶草根系有较强的穿透能力, 根系的穿插生长使土壤变得疏松; 另一方面, 白三叶草属豆科草, 长期种草增加了土壤有机质, 形成了大量的稳定的团粒结构, 熟化土壤, 使土壤变得疏松。而且, 种草果园在雨水比较多的季节, 保水持水能力更强可减少地面径流, 减少水土流失。同时, 苹果与梨树生

长要求土壤比较疏松,疏松的土壤能加快营养物质的运 转和吸收,更能提高土壤中空气含量,利于土壤微生物 的活动。因此,种草果园对苹果树的健壮生长无疑是十 分有利的。

4.4 调节了土壤温度

由表 3 可知, 夏季天气过热、温度过高时, 种草果园 较不种草果园可有效降低土壤温度。降低幅度达 2.1 ℃。 由表 4 可知, 冬季当温度讨低时, 种草果园较不种草果 园可以有效提高十壤温度,增幅达 2.3 ℃,从而减少了十 壤温度变幅 使 7~20 ℃土壤温度能够维持更长时间,相 对延长了果树根系活动和生长的时间, 有利于苹果根系 生长发育和营养物质的吸收。

4.5 提高了土壤蓄水保肥能力

由表 2、5 可知, 在春季干旱少雨时, 土壤表层 0~ 20 cm 深度的土壤中,种草园土壤含水量较不种草园减 少,其原因是种草园土壤上层空隙较大,新的草体还没 有长高,对地面覆盖作用减少,表层土壤水分易蒸发,同 时白三叶草在干旱的早春对表层土壤中水分吸收量较 大, 所以 0~20 cm 土层内种草园土壤含水量减少: 而土 壤20~40 cm 深度处种草园含水量增加,说明白三叶草 尽管还未长起, 但对地面的履盖作用依然有效, 对矮化 苹果树根系生长有利, 更易干养分的吸收移动, 因为矮 化苹果树吸收根大多数集中在 20~40 cm 的土层内。 40~80 cm 深度处种草果园土壤含水量降低, 80~ 100 cm 深度处含水量又增加。同时,由表 2 可知,在雨 量较多的秋季,种草园与未种草园相比,种草园0~ 20 cm 土壤内自然含水量增加了 4.5%, 含水量增加了 714 kg/667m², 这是因为种草使土壤更加疏松, 总孔隙度 增大,能接纳大量降雨,使土壤保水持水能力增强,同时 草覆盖作用的充分发挥,使土壤内水分的蒸发量减少。 总之,种草果园不论在干旱年份和季节,吸收根层土壤 含水量的增加,对苹果树生长发育是十分有利的,同时, 随着白三叶草的生长,覆盖作用增强,土壤上下层含水 量均明显增加。因此,种草无疑对土壤含水量有一定的 保存和增加作用。在雨季或草长高以后,土壤则能吸纳 更多的水分,减少水土流失,土壤地面水分蒸发量大大 减少,保水保肥能力显著增强。

4.6 种草苹果园小气候变化对树体生长结果的影响

种草苹果园不仅有效的改良了果园土壤的理化性 状 而且形成的小气候对于苹果树体的生长发育非常有 利。据观察和测定,有四个方面的影响:一是改善了果 园的生态环境,不仅瓢虫、草蛉、扑食螨等天敌数量增加 了20%。果树抗性增强,病虫害发生率低,红蜘蛛、蚜 虫、腐烂病、日烧病均有所减轻,虫果率低于0.4%,病叶 率低于 2.5%, 日烧病低于 1%, 而未种草果园取袋后日 烧病达 14%。种草果园有时红蜘蛛发生较为严重,但害

虫大多在三叶草 L, 而果树 L则不多, 因此同样管理, 种 草园与不种草园相比 果园喷药次数减少2~3次,减少 农药投资 100~120 元/667m²。二是种草果园与不种草 果园相比, 其坐果率提高了 10%~15%, 增产 20%~ 35%,同期果实着色率提高了30%以上。三是省力省 工。果园种草 2~3 年后除少数顽固性杂草外,一般性 杂草如狗尾巴草、刺桔、打碗花、桔根、黎等均被控制,很 难生长,免除了3~4次中耕除草和土壤深翻次数,节省 劳力、减轻了劳动强度。可节省劳动力费用 140 元/ 667m²。据5月中旬调查,种草果园平均每棵树枝量为 562个,中长枝平均长度 27.9 cm, 新梢最长 65 cm,长 (中+长)短枝比率为 1:1.6.8 月份百叶鲜重 112 g; 对 照未种草园平均每棵树枝量为 521 个,中长枝平均长度 24.7 cm, 新梢最长 52 cm, 长(长+短)短枝比率 1:1.3. 百叶鲜重 105.4 g。由此可见,种草园苹果树明显健壮, 有利干增产和提高果品质量。

4.7 种草果园苹果产量和质量大辐度提高

由表 6 可知, 种草园与不种草园相比, 产量增加了 90 kg/667m², 75[#]以上果率增加了 30.2%, 全红果率 (90%以上着色面)提高了 20.6%, 70%以上着色果率提 高了10.4%, 两项合计提高了31%, 综合果个大小与果 面着色情况,优果率提高了30%。

5 结论

综上所述,种草果园一举多得,既能有效提高土壤 有机质含量,活化土壤减小容重,调节土壤温度、湿度。 肥田沃十,极大地提高果园经济效益:又能美化环境,减 少水土流失,调节气候,使种地与养地相互结合,降低了 成本,有较高的经济效益和社会效益,是一项先进而有 效的实用技术。

