赤霉素处理对苦苣采种的影响

王 艳, 任 吉 君, 周 荣, 梁 燕 芳

(佛山科学技术学院 园艺系 广东 佛山 528231)

摘 要: 试验研究了不同浓度赤霉素对苦苣在广东采种的影响。结果表明,300 mg/L的赤霉素溶液连续喷洒苦苣5 d 为最佳处理 采种量可达 42.96 g/m²,种子质量优于其它处理。

关键词: 苦苣;赤霉素; 采种

中图分类号:S 636.9:S 482.8⁺5 文献标识码:A 文章编号: 1001 - 0009(2007)09 - 0028 - 02

苦苣(Cichor ium endivia L.),别名花苣、花叶生菜,为菊科苦苣属 2 a 生蔬菜,原产于东印度、欧洲南部。 苦苣的食用部分嫩叶富含矿物质、维生素、氨基酸等,具有清热解毒、凉血利尿、祛瘀止痛、补虚止咳等功效 ¹¹。 在我国,苦苣栽培历史较短,栽培面积不大,北京、上海、广州、青岛、武汉等大城市郊区有少量栽培,产品主要供宾馆特需之用,少量进入超市。

苦苣是一种比较喜欢凉爽的长日照植物,生育适温 12~26℃,广东的秋、冬、春季基本能满足苦苣的整个营养生长过程,但在广东自然状态下,苦苣抽薹较迟,开花结实恰逢高温期,不利于采种,为了解决苦苣在广东的采种问题,开展了赤霉素对苦苣采种影响的研究^[2-3]。

1 材料与方法

1.1 材料

苦苣:花苦一号。赤霉素:上海溶剂厂生产。

1.2 试验设计

试验设7个处理。A: 0. 1g/L连续喷洒5d; B: 0. 1g/L

1.3 种子质量测定

种子变黄褐色时分批采收。取样 100 粒,清水浸种 8 h 后,在纸床 22 [°](条件下催芽,测定发芽势、发芽率、活力指数 ⁴。初、末次计数时间分别为 5 d 和 14 d, 4 次重复。每个重复调查 10 株幼苗的平均重量,用来计算活力指数(活力指数=发芽率(%)×幼苗重量(mg))。采用烘干法测种子含水量。种子千粒重、比重的测定参照《蔬菜种子大全》的方法 ⁴。

2 结果与分析

2.1 赤霉素处理对苦苣株高的影响

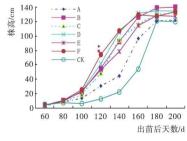


图 1 赤霉素处理对株高的影响

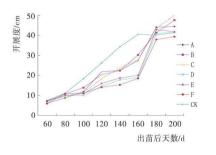


图 2 赤霉素处理对开展度的影响

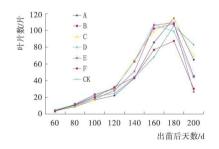


图 3 赤霉素处理对功能叶片数的影响

由图 1 可以看出,各处理生长曲线均呈"慢-快-慢",即"S"型,赤霉素最明显的作用是促进茎的伸长生长。

第一作者简介: 王艳(1962-), 女, 哈尔滨人, 副教授, 硕士, 主要从 事园艺植物资源研究。

基金项目: 佛山 市科技发展专项基金资助 项目 (04020011)。 收稿日期: 2007-04-02 开始明显加快,迅速抽臺,快速生长持续时间明显长于对照,药效可持续 100 d 左右。这种快速生长及其持续时间与赤霉素浓度、处理天数有关。浓度越高,喷药次数越多,植株生长高峰的出现就越早,但到收获期各处理株高差别变得不明显了。赤霉素引起株高的快速增长主要体现在节间的快速伸长方面。

经赤霉素处理约 10 d, 即出苗 80 d 之后, 植株生长速度

2.2 赤霉素处理对苦苣开展度的影响

由图 2 可以看出,赤霉素对植株的横向开展有明显 的抑制作用,大约在药效解除后,开展度比对照有所加 大,但此时已进入苦苣发育的后期,因此,生产上利用赤 霉素处理进行采种宜适当密植。

2.3 赤霉素处理对苦苣植株叶片数的影响

由图 3 可知, 适宜浓度的赤霉素处理具有促进营养 生长作用,表现为叶片分化加快,叶片数增多,见 A、B、C 处理: 但高浓度和增加喷药次数可引起叶片早衰, 例如 D、E、F 处理。

2.4 赤霉素处理对苦苣物候期和产量的影响

由表 1 可以看出,不同浓度的赤霉素处理对苦苣生 长发育有明显的促进作用。经赤霉素处理、苦苣的抽 臺、现蕾、开花、种子成熟均明显提前,而且赤霉素浓度 越大、喷洒天数越长,其生育速度越快,说明赤霉素可促 进苦苣由营养生长向生殖生长过渡,并具有加快苦苣生 长发育速度的作用。在广东、苦苣提早抽薹、开花有利 于在适宜温、湿度条件下进行授粉受精。5月中旬后开 花因高温关系苦苣结实率严重下降,瘪粒增加。

表 1 赤霉素处理对苦苣物候期和产量的影响

AL TER	抽薹期	现蕾期	开花期	种子成熟期	小区立具	
处理	/月. 日	/月.日	/月.日	/月.日	小区产量/g	
A	1. 21	3. 27	5. 02	5. 28	68. 72 abc AB	
В	1. 20	3. 25	4. 29	5. 27	75.84 ab AB	
C	1. 23	3. 26	4. 28	5. 26	85. 92 a A	
D	1. 22	3. 25	4. 24	5. 24	69. 20 abc AB	
E	1. 20	3. 21	4. 19	5. 20	61.44 bc AB	
F	1. 21	3. 20	4. 17	5. 20	52. 97 c B	
CK	3. 25	4. 16	5. 14	6.07	63. 84 bc AB	

注 小写字母为 0.05 水平, 大写字母为 0.01 水平, 下同。

赤霉素对苦苣的采种有较大的影响。以处理()的 产量最高, 折合产量 28.65 kg/667m², 高出对照 34.6%, 与对照相比差异显著; 其次为处理 B, 折合产量为 25.29 kg/667m², 高出对照 18.8%, 与对照相比差异不显 著, 处理 F 产量最低, 折合产量 17.93 kg /667m²。由此 可见,采用赤霉素处理,如果浓度和方法掌握得当会显 著提高采种量,而赤霉素处理浓度过高则不利于苦苣 采种。

2.5 赤霉素处理对苦苣种子质量的影响

由表 2 可以看出,发芽势、发芽率和比重不同处理 有显著的差别。发芽势由大到小排列顺序依次为 B> C>F>A>E>CK>D;发芽率由大到小排列顺序依次 为 B>C>A>F>CK>E>D; 比重由大到小排列顺序 依次为 $C > A \setminus B \cdot CK > F > D \setminus E$ 。 苦苣种子的种子活力、 含水量、千粒重指标,各处理差异则未达到显著水平。 处理 A、B、C 在各指标中都表现出了明显的优势,说明较 低浓度、较短时间处理对种子质量的提高是有益的。

赤霉素对苦苣种子质量的影响 表 2

_	处理	发芽	发芽	活力	种子千粒	比重	含水
		势/%	率/%	指数	重/g	$/\text{mg} \cdot \text{mL} - 1$	量/%
	A	85.3 ab AB	87. 2 ab AB	19.00 a A	1.43 a A	0.83 ab A	8.43 a A
	В	89.3 a A	90. 2 a A	18.75 a A	1.45 a A	0.83 ab A	8.53 a A
	C	87.5 ab AB	88. 6 ab AB	19.00 a A	1.44 a A	0.84 a A	7.97 a A
	D	78.5 bB	79.6 cB	16.25 a A	1.40 a A	0.81 ab A	8.17 a A
	E	82.8 ab AB	$83.0\mathrm{bc}\;\mathrm{AB}$	18.75 a A	1.39 a A	0.81 b A	7.80 a A
	F	85.8 ab AB	86.0 ab AB	16.50 a A	1.40 a A	0.82 ab A	7.87 a A
	CK	82.5 ab AB	83.6 bc AB	17.00 a A	1.37 a A	0.83 ab A	7.70 a A

综上所述,根据种子产量、比重、发芽势、发芽率和 活力指数的综合比较发现,以处理 C,即连续 5 d 喷洒浓 度为 0.3 g/L 的赤霉素处理为最佳处理。

3 结论

苦苣经过赤霉素不同处理, 其植物学性状和产量有 明显变化。试验所设的赤霉素处理可有效促进苦苣生长 发育,可将植物的抽薹、开花、种子成熟时间提前9~18 d。 赤霉素浓度越大和喷洒天数越长,越有利于促进生殖生 长。但是,赤霉素浓度过大,易引起植株早衰。

从种子发芽势、发芽率、活力指数、千粒重等指标 看, 处理 A、B 和 C 的种子质量较好, 结合产量性状分析, 得出处理 C 在各处理中表现最好。在广东地区进行苦 苣采种,赤霉素适宜的处理方式为用 300 mg/L 的赤霉 素溶液连续喷洒植株5d。

参考文献

- 李式军, 刘凤生. 珍稀名优蔬菜 80 种[M]. 北京. 中国农业出版社 [1] 1995: 72-75.
- 董玉明 叶自新.GA3在蔬菜上的应用 JI. 长江蔬菜 2003(3):28.
- 李曙开. 植物生长调节剂与农业生产 M1. 北京: 科学出版社, 1989: 48-62.
- 吴志行. 蔬菜种子大全 M]. 南京: 江苏科学技术出版社, 1993.

Effect of Gibberellins on Collecting Seed of the Endive(Cichorium endivia L.)

WANG Yan REN Ji-jun ZHOU Rong LIANG Yan-fang (Department of Horticulture Foshan University, Guang dong 528231, China)

Abstract: Effects of gibberellins on collecting seed of endive in Guangdong were studied in this paper. The result showed that 300 mg/L gibberellins was the best concentration to spraying the endive. The quantity of collecting seed was 42. 96 g/m². The quality of the seed were better than the other treatment.

Key words: Endive: Gibberellins: Seed collecting