売聚糖对平菇菌丝体生长代谢的影响

吴智艳, 史振霞, 王利荣

(河北省廊坊师范学院生命科学学院,065000)

摘 要: 以平菇为材料, 研究在不同质量浓度(0.125、0.083、0.063、0.05 mg/mL)的壳聚糖的 条件下对菌丝体生理生化的影响。结果表明: 不同质量浓度的壳聚糖 对平菇菌丝体的生长代谢 均具有促进作用, 但随添加壳聚糖浓度的不同而有所不同。其中以 0.083 mg/mL的 壳聚糖促进 作用最为明显, 可以使菌丝体干重增加 33.3%, 蛋白质 含量、可溶性糖含量及核酸含量分别增加 34.72%,36.33%和39.53%,0.125 mg/mL和0.063 mg/mL的壳聚糖稍次之,0.05 mg/mL的壳 聚糖影响不明显。

关键词: 壳聚糖; 平菇; 菌丝体; 生长代谢 中图分类号: 0.539: $S.646.1^+4$ 文献标识码: A 文章编号: 1001-0009(2007)07-0201-03

壳聚糖又称脱乙酰几丁质、聚氨基葡聚糖、黏性甲 壳素^[],化学名为聚(1,4)-2-乙酰氨基-2-脱氧β-D-葡聚 糖 分子式为(C8 H13 NO5), 是由甲壳素经脱乙酰得到的 一种阳离子多糖衍生物,具有优良的生物亲和性,其分 子链上丰富的羟基和氨基使其易于进行化学修饰而赋 予多种功能[3],广泛应用于日用化丁、医药、食品、环保等 领域。近年来,人们发现它在农业上也具有广阔的应用 前景。大量研究证明,它作为植物生长调节剂可调节植 物的生长发育, 增强作物抗逆性, 提高农作物产量和改 善农产品品质,对农产品贮藏保鲜也具有明显的效果; 还可用作无公害的土壤改良剂[2.4]。

平菇(Pleurotus ostreatus)是我国商业化栽培的主要 食用菌之一, 其质嫩味鲜, 营养丰富, 子实体富含多种有 机氨基酸和糖类,同时还含有维生素 C 及微量元素铁、 钼、锌、铜、磷、钴,具有一定的疗效作用,是一种高蛋白、 低脂肪的产品,深受广大消费者的喜爱。由于平菇栽培 原料来源广泛、适应性强、栽培简便、产量高、经济效益 好, 近年来栽培面积和产量大幅增长[6,13]。

近年来已有众多生长调节剂应用于食用菌的栽培 中 并且具有明显的增产效果,但是壳聚糖应用于食用 菌方面的报道还不多见,尤其是对食用菌生长代谢的研 究几乎为空白, 国内仅见盛彦清[6] 等研究壳聚糖能够使 草菇生长加快,并使其产量增加的报道,但没有进一步 的研究。鉴于此,以平菇为供试材料,采用液体培养方 法就不同浓度壳聚糖对平菇菌丝体生长代谢的影响进 行初探,目的在于寻找一种更为经济,而且可以大量提 高平菇产量和品质,增加经济效益的生长调节剂。

1 材料与方法

- 1.1 材料
- 1.1.1 供试菌种 平菇 2026 由廊坊绿丰食用菌公司提供。
- 1.1.2 供试药品 脱乙酰度≥85%壳聚糖 购于山东济 南海得贝海洋生物有限公司。
- 1.1.3 培养基 种子培养基: PDA 培养基。一级摇瓶 (液体种子)培养基: 马铃薯 20%、麦麸 3%、淀粉 1%、硫 酸镁 0.1%、VB10.0001%,pH 自然。二级摇瓶(液体发 酵)培养基:马铃薯20%、麦麸3.5%、淀粉1.5%、葡萄糖 1%、蛋白胨 0.2%、硫酸镁 0.1%、VB 0.0001%、pH 白然。
- 1.2 方法
- 1.2.1 壳聚糖母液的制备[3] 取 0.5 g 壳聚糖, 搅拌溶 解于 50 mL 0.5 mol/L 的盐酸中,用 1 mol/LNaOH 溶液 调 pH 值至 6.0, 搅拌使沉淀完全溶解, 最后定容至 100 mL, 得 0.5%的壳聚糖母液。
- 1.2.2 一级摇瓶菌种的制备[8] 母种经斜面活化之后 用接种铲取一块 1 cm² 左右的菌块, 定量接种于 250 mL 三角瓶装 120 mL 液体种子培养基中, 于 (24±1) °C 200 rpm培养 7 d。
- 1.2.3 平菇菌丝体的培养^[8.9] 分别取不同脱乙酰度的

第一作者简介: 吴智艳(1962-), 女, 副教授, 主要从事食用菌教学 和科研工作, E-mail: lfwuzhiyan@126. com。

基金项目: 廊坊师范学院科学研究资助项目(ISZZ200605)。 收稿日期: 2007-03-09

壳聚糖溶液, 加入到 $250~\mathrm{mL}$ 三角瓶装有 $100~\mathrm{mL}$ 液体发酵培养基中, 使壳聚糖溶液的质量浓度分别为 $0.125~\mathrm{mg/mL}$ 、 $0.083~\mathrm{mg/mL}$ 、 $0.063~\mathrm{mg/mL}$ 、 $0.050~\mathrm{mg/mL}$,以不添加壳聚糖的液体发酵培养基作为对照组, 每个试验组 $3~\mathrm{fm}$ 个重复。然后取一级摇瓶液体菌种, 接种量 10%定量接种到含不同浓度壳聚糖溶液的液体发酵培养基中,于 $(24\pm1)~\mathrm{C}$, $150~\mathrm{rpm}$ 培养 $7~\mathrm{d}$ 。

1.2.4 指标测定 菌丝体生物量的测定: 将发酵结束的发酵液以 4 层纱布过滤, 并用适量蒸馏水洗涤数次, 得菌丝体, 于 80 °C烘干至恒重, 用电子天平称重。蛋白质含量测定: 发酵上清液以 Folin-酚法测定蛋白质的含量^[1]。菌丝体可溶性糖含量测定: 以蒽酮比色法测定发酵上清液可溶性糖的含量^[1]。 平菇菌丝体核酸含量测定: 以紫外吸收法测定发酵上清液核酸的含量^[1]。

2 结果与分析

2.1 壳聚糖对平菇菌丝体生长的影响

平菇在不同浓度的壳聚糖条件下菌丝体生长量有较大的变化(见表 1), 从表 1 中可以看出: 不同浓度的壳聚糖对平菇菌丝体均有促生长作用, 其菌丝体的生长量与对照相比均有一定的提高。其中以 0.083 mg/mL 的壳聚糖浓度时平菇菌丝体生长量最大, 增长率达33.3%, 壳聚糖质量浓度在 0.125 mg/mL 和 0.063 mg/mL,菌丝体生长量次之,增长率分别为 23.8%和 31.3%, 而在 0.05 mg/mL质量浓度时平菇菌丝体生长量最小,增长率为 10%。

表 1 克聚糖对平菇菌丝体干重的影响

売聚糖含量	菌丝体干重/g ° 100mL-1			平均值	比增率
$_{\rm mg} ^{\circ} \rm mL^{-1}$	I	II	III	$/\mathrm{g}^\circ\mathrm{mL}^{-1}$	/ %
对照	0.7534	0.8125	0. 9983	0.8547	0
0.05	0.8946	0.9430	0. 9951	0.9442	10.44
0.063	1.0340	1.2250	1. 1093	1. 12 28	31.30
0.083	1.7346	1.1176	1. 1591	1.3371	33.30
0.125	0.9442	1.2181	1. 0123	1.0582	23.80
0.05	0.8946	0.9430	0. 9951	0.9442	10.44
0.063	1.0340	1.2250	1. 1093	1. 12 28	31.30
0.083	1.7346	1.1176	1. 1591	1.3371	33.30
0.125	0.9442	1.2181	1. 0123	1.0582	23.80

2.2 壳聚糖对平菇发酵液蛋白质含量的影响

不同浓度壳聚糖对发酵液蛋白质含量都有一定影响(见表 2), 结果表明: 平菇在加入不同浓度壳聚糖的液体培养基中生长, 发酵液中蛋白质含量均有所提高, 壳聚糖质量浓度在 0.083 mg/mL 和 0.125 mg/mL 时, 菌丝体的蛋白质增长率分别为 34.72%和 30.04% 增长幅度较大, 而在 0.05 mg/mL 和 0.063 mg/mL 时, 增长幅

度较小, 分别为 10.34%和 12.58%。

表 2 克聚糖对平菇发酵液蛋白质含量的影响

売聚糖含量	蛋白质含量/mg°mL-1			平均值	比增率
$/\mathrm{mg}^{\circ}\mathrm{mL}^{-1}$	I	II	III	$/\mathrm{mg}^{\circ}\mathrm{g}^{-1}$	1%
对照	86. 6346	112. 2988	60. 3491	86.4275	0
0.050	87. 5980	115.0513	83. 4351	95.3615	10. 34
0.063	91. 2737	119.0513	80.7590	97.3000	12. 58
0.083	125. 5374	144.0300	79. 7268	116.4313	34. 72
0. 125	118. 2890	142. 4772	76.4008	112.3890	30. 04

2.3 壳聚糖对平菇菌丝体可溶性糖含量的影响

平菇在不同浓度的壳聚糖条件下菌丝体可溶性糖含量有较大的变化(见表 3), 从表 3 可以看出: 一定浓度的壳聚糖可以提高平菇菌丝体可溶性糖含量, 壳聚糖质量浓度在 0.083 mg/mL时, 菌丝体可溶性糖含量增长幅度最大, 增长率为 36.33%, 在质量浓度为0.063 mg/mL和0.125 mg/mL时, 可溶性糖增长率为31.12%和24.79%, 而在 0.050 mg/mL质量浓度时平菇菌丝体可溶性糖含量增幅最小,与对照相比几乎没有多大变化。

表 3 克聚糖对平菇菌丝体可溶性糖含量的影响

売聚糖含量	可溶性糖含量/mg°g-1			平均值	比增率
_/mg ° mL ⁻¹	I	II	III	/mg ° g ⁻¹	1%
对照	264.0	136.5	163. 0	188.0	0
0.050	202.0	142.5	237. 5	194.0	3.19
0.063	282.0	214.5	243. 0	246.5	31. 12
0.083	312.0	189.0	268. 0	256.3	36. 33
0. 125	276.0	172.5	256. 0	234.6	24. 79

2.4 壳聚糖对平菇菌丝体核酸含量的影响

不同浓度壳聚糖对菌丝体核酸含量有一定影响(见表 4), 从表 4 可以看出: 不同浓度的壳聚糖均可提高平菇菌丝体核酸的含量. 壳聚糖质量浓度在 0.083 mg/mL时, 菌丝体核酸含量增长幅度最大, 增长率为 36.33% 在质量浓度为 0.063 mg/mL 和 0.125 mg/mL时, 可溶性糖增长率为 28.83%和 30.98%, 而在 0.050 mg/mL质量浓度时平菇菌丝体核酸含量增幅最小, 与对照相比几乎没有多大变化。

表 4 克聚糖对平菇菌丝体核酸含量的影响

壳聚糖含量	核酸含量/ mg ° g−1			平均值	比增率
$_{\rm mg}$ $^{\circ}$ mL $^{-1}$	I	II	III	/mg ° g-1	/%
对照	0. 976	0.7319	0.6176	0.8418	0
0.05	1. 2902	0.9234	0.6395	0.951	8.696
0.063	1. 5179	0.8973	0.8383	1.0845	28. 83
0.083	1. 5183	1.0534	0.952	1. 1746	36. 33
0. 125	1. 3792	1.029	0.8998	1. 1026	30. 98

3 讨论

壳聚糖是一种天然的阳离子聚合物,具有植物生长 调节剂活性,能够促进根茎的发育,调节作物生长,增加 作物的抗性,提高作物的产量和品质[5,7]等,作为壳聚糖 原料的甲壳质资源十分丰富,和其他生长调节剂相比有 巨大的优势。

试验在液体培养条件下,对不同浓度的壳聚糖条件 下平菇菌丝体生长及代谢情况进行了研究。结果表明一 定浓度的壳聚糖对平菇菌丝体的生长代谢有明显的促 进作用, 壳聚糖质量浓度为 0.125 mg/mL、0.063 mg/mL、 0.083 mg/mL时,对平菇菌丝体生长、蛋白质,可溶性糖 和核酸合成都有一定的促进作用,尤其是在质量浓度为 0.083 mg/mL时,可使平菇的菌丝体干重增加 33.3 %, 蛋 白质含量、可溶性糖含量、核酸含量分别增加34.72%、 36.33 %和 39.53 %, 这说明 0.083 mg/ mL 是壳聚糖作为 生长调节剂最佳剂量,而在质量浓度为0.050 mg/mL时, 作用不明显。

由于壳聚糖这一天然聚合物能够在植物体内通过 各种因素的综合作用而发生降解,不但能够生成植物体 必需的低聚糖、同时还能诱发植物生长的活性酶、提高 细胞的代谢强度, 为细胞提供必需的营养和适宜的渗透 压[5.11]。对于壳聚糖调节食用菌生长发育的机理,通过 对平菇菌丝体中蛋白质含量和核酸含量有明显促进作 用的结果说明: 壳聚糖促进平菇生长发育的分子水平上 的作用机理,可能是通过提高菌丝体中总 RNA (包括 mRNA 和 tRNA)的含量,进而影响与平菇菌丝体生长发 育有关的酶或蛋白质的合成, 即壳聚糖对平菇菌丝体生 长发育有关的基因表达具有调节作用,因而可促进平菇 菌丝体的生长,提高平菇菌丝体中蛋白质含量、可溶性 糖含量及核酸含量。但壳聚糖对平菇菌丝体生长基因 表达的调控在转录和翻译水平上的具体作用的分子机 理还有待进一步的研究。

参考文献

- Kurita K. Chemistry and application of chitin and chitosarf J. Polymer Degradation and Stability, 1998, 59(1): 117-120.
- 陈惠萍 徐朗莱. 壳聚糖调节植物生长发育及诱发植物抗病性研究 进展 』]. 云南植物研究 2005 27(6):613-619.
- 何乃普,宋鹏飞,王荣民,等.甲壳素/壳聚糖及其衍生物抗菌、抗肿 瘤活性研究进展 』]. 高分子通报, 2004(6): 14-17.
- 马鹏鹏, 甲壳素及其衍生物在农业生产中的应用。11. 植物生理学通 iH. 2001, 10(5): 475-478.
- 余明革,杨洪强,刘高峰,等. 壳聚糖对黄瓜萌芽种子及幼苗生理生 化特性的影响[J]. 山东农业大学学报(自然科学版), 2002, 35(1): 47-50.
- 盛彦清 陈繁忠,傅家谟,等. 壳聚糖和黄腐酸在草菇中的应用试验 []]. 中国食用菌, 2004, 23(5); 20-21.
- 廖春燕 洪文英. 壳聚糖对番茄枯萎病菌菌丝和孢子萌发研究 』. 浙 江大学学报 2001, 27(6):619-623.
- 温海洋、张景文, 肖洪东, 等. 液体摇瓶培养平菇菌种的生理与应用 研究』1. 食用菌, 1998(1): 20-24.
- 黄清荣 王淑芳,刘凤花,等,白平菇液体菌种生产及出菇试验[1].食 用菌 2003(3): 17-18.
- [10] 唐丽琴、陈礼明、刘圣、等. 蒽酮-硫酸比色法测定 麦冬多糖的含量 []]. 安徽医药 2003, 7(1):39-40.
- [11] 杨桂兰,郭学平. Low ry 法和 Bradford 法测定玻璃酸钠中蛋白质含量 的比较[J]. 中国生化药物杂志 2003 24(3):131-133.
- [12] 郑理,朱怀恩,何倩琼.保健食品中核酸含量的测定[1].食品工业. 2002(1): 38-40.
- [13] 刘学彦 周巍, 孙凯. 植物生长调节剂对平菇生长的影响 』]. 信阳农 业高等专科学校学报 2003, 13(3):18-19.

Effect of Chitosan on the Growth and Metabolism of Hyphostroma of *Pleurotus Ostreatus*

WU Zhi-yan SHI Zhen-xia WANG Li-rong (College of Life Science Langfang Teacher College, Hebei 065000)

Abstract: Took the *Pleurotus Ostreatus* as the material, studied the physiology and biochemistry effect of the hyphostroma in different concentration (0. 125 mg/mL, 0.083 mg/mL, 0.063 mg/mL, 0.05 mg/mL) chitosan. The results indicated: Different concentration of chitosan promoted the *Pleurotus Ostreatus* myceliaum growth and metabolism, and the promotion was followed by the concentration of chitosan. The most obvious promotion was the chitosan concentration in 0.083 mg/mL, which could increase the dry weight of mycelium by 33.3%, in addition, increased the content of protein soluble carbohydrate and nuclear acid by 34.72%, 36.33% and 39.53%, and the concentration in 0.125 mg/mL and 0.063 mg/ mL is next-best, and the effect was not evident in 0.05 mg/mL.

Key words: Chitosan; Pleurotus Ostreatu; Hyphostroma; Growth metabolism