不同品种和密度对加工型甜椒产量和产值的影响

鄂利锋,殷学贵,王勤礼,陈修斌,刘玉环

(甘肃河西学院园艺系,张掖 734000)

摘要: 通过加工型甜椒品种和密度两因子随机区组试验结果表明, 小叶茄门、中叶茄门、大叶茄门 3 品种对产量有显著影响; 随着密度的增加, 产量有升高的趋势; 品种和密度互作以大叶茄门 105270 株/hm²密度的产量和产值最高。综合产量和产值等因素分析认为, 在河西荒漠区气候条件下, 加工型甜椒小叶茄门、中叶茄门、大叶茄门最适宜的栽培密度分别为 161940 株/hm²、127 590 株/hm²、105 270 株/hm²。

关键词: 加工型甜椒; 品种; 密度; 产量; 产值

中图分类号: S641.3 文献标识码: B

文章编号: 1001 - 0009(2006) 04 - 0019 - 03

加工型甜椒是张掖地区栽培面积最大的脱水蔬菜加工原料之一。加工的脱水甜椒粒出口占全国同类产品出口量的80%,在欧美及东南亚等国家十分畅销。目前本区甜椒的主栽品种很多,在生产中,菜农由于品种、密度选用不当,造成产量低、品质差、病虫害严重等问题。制约着农民的增收、企业的增效。通过采用不同品种与密度栽培试验的研究。旨在为当地加工型甜椒丰产优质栽培和生产推广应用提供科学依据。

1 材料和方法

1.1 试验材料

供试品种为当地种植的小叶茄门、中叶茄门、大叶茄门、3个品种。

1.2 试验方法

试验因子为品种(P)与密度(D)。P1为小叶茄门,P2为中叶茄门,P3为大叶茄门;D1为221610株/hm²,D2为161940株/hm²,D3为127590株/hm²,D4为105270株/hm²,D5为89580株/hm²。

试验采用随机区组设计, 重复 3 次, 小区为长方形, 小区面积 $1.9 \text{m} \times 6 \text{m}$, 每小区种植两垄, 沟宽 0.95 m, 穴距按密度设置, 共设 19 cm (D1)、26 cm (D2)、33 cm (D3)、40 cm (D4)、47 cm (D5) 5 个穴距(行距相同)进行品种和密度的二因子试验, 每穴双株栽培, 其田间四周设保护行。小区产量以实收计产。

根据播期试验结果^[2],该试验于2004年2月28日在河西学院园艺系四号拱圆形温室中进行育苗,每品种分设一个育苗小区,共设3个育苗小区。播种前一天种子均采用温汤

浸种, 配制营养土并按 8cm×8cm 株行距播种, 每穴播 3~4 粒种子, 播后覆沙, 并覆盖地膜。播种时尽量注意各处理所 处的条件基本一致, 育苗方法同常规育苗。

试验地地势平坦、土壤为沙壤土、前茬为休闲地、肥力中等、采用井水灌溉。 3 处理小区的适龄苗于 5 月 10 日晚霜过后同时定植于试验地。 定植前采用土壤农化常规分析方法³¹ 测定 0 ~ 20 cm 耕 层土样分析、结果为:有 机质 9 ~ $16 \, \mathrm{mg} \, / \mathrm{kg}$,碱 解 氮 57.5 ~ 68. $2 \, \mathrm{mg} \, / \mathrm{kg}$,速 效 磷 10.0 ~ 25.0 $10 \, \mathrm{mg} \, / \mathrm{kg}$,速效钾 10.0 ~ $10 \, \mathrm{mg} \, / \mathrm{kg}$,速效钾 10.0 ~ $10 \, \mathrm{mg} \, / \mathrm{kg}$,速效钾 10.0 ~ $10 \, \mathrm{mg} \, / \mathrm{kg}$,速效许 10.0 ~ $10 \, \mathrm{mg} \, / \mathrm{kg}$,速效许 10.0 ~ $10 \, \mathrm{mg} \, / \mathrm{kg}$,速效许 10.0 ~ $10 \, \mathrm{mg} \, / \mathrm{kg}$,速效许 10.0 ~ $10 \, \mathrm{mg} \, / \mathrm{kg}$,速效许 $10 \, \mathrm{mg} \, / \mathrm{kg}$,。 $10 \, \mathrm{mg} \, / \mathrm{kg}$ 。 $10 \,$

栽培管理同大田管理。灌定植水后,一般不旱不浇水,待门椒座住后,肥水猛攻、结合浇水 667 m² 施尿素 20 kg 或磷二铵 10~15 kg 以后每层果实采收后都要结合浇水追施一次肥料,并经常保持沟内土壤湿润。灌水时严禁沟内积水或漫垄,小水勤浇。生长中期要注意辣椒疫病、病毒病、蚜虫、棉铃虫的预防工作。

田间定植后, 随时观察生长和病害情况, 各处理根据成熟情况收获计产; 熟性以前期产量占总产量 60%以上为早熟、 $30\% \sim 60\%$ 为中熟、30%以下为晚熟。

2 试验结果与分析

2.1 加工型甜椒不同品种、密度对产量的影响

每次收获后,每个小区单独计产,最终求其总产量,其统计分析结果如下。

表 1 加工型甜椒不同品种、密度对产量的影响

处理	区组总产量		组总产量 小区平均产量		折合单产		
组合	I	II	III	kg	总和	(kg/hm^2)	位次
P1D1	58.75	55.73	58. 27	57. 58 d CD	172.75	50 513.05	13
P1D2	71.60	66.88	69. 23	69. 24 bc B	207.71	60 737. 25	4
P1D3	65.29	62.24	61. 51	63. 01 c C	189.03	55 273.82	9
P1D4	58.70	55.40	55. 24	56. 45 d D	169.34	49 51 8. 27	14
P1D5	56.32	51.17	52. 97	53. 49 d D	160.46	46 92 0. 77	15
P2D1	63.23	66.26	54. 54	61. 34 cd CD	184.03	53 81 3. 22	11
P2D2	69.34	64.99	68. 63	67. 65 bc BC	202.96	59 347. 7	5
P2D3	71.93	75.55	72. 47	73. 31 a b AB	219.94	64 31 3. 74	2
P2D4	69.96	66.91	65. 12	67. 33 bc BC	201.99	59 063.48	6
P2D5	61.75	63.94	60. 56	62. 08 cd CD	186.25	54 46 0. 62	10
P3D1	60.26	63.26	58. 91	60. 81 cd CD	182.44	53 347. 4	12
P3D2	67.12	65.69	63. 26	65. 36 c BC	196.07	57 334.45	8
P3D3	68.45	72.52	69. 55	70. 17 b AB	210.52	61 55 8. 34	3
P3D4	73.12	75.82	77. 25	75. 39 a A	226.18	66 137. 52	1
P3D5	67.85	68.26	65. 12	67. 08 bc BC	201.23	58 842. 42	7

注: 表中大写英文字母表示在 1%水平的差异, 小写英文字母表示在 5%水平的差异。

由方差分析分别计算各变因的 F 值并根据查 F 值表 所得的临界 F 值,来判断各变异的差异显著性于下表。

表 2 方差分析

21 75							
变 因	SS	df	M S	F	F _{0.05}	F _{0.01}	
区组间	33.94	2	16.97	2.90	3.34	5.45	
处理间	1 623. 66	14	115. 98	19.79 * *	2.06	2.80	
P(品种)	519.22	2	259. 61	44.30 * *	3.34	5.45	
D(密度)	583.62	4	145. 91	24.90 * *	2.71	4.07	
P *D(品种×密度)	520.82	8	65.10	11.11 * *	2.29	3.23	
误差	164.10	28	5.86				
总变异	1 821. 70	44					

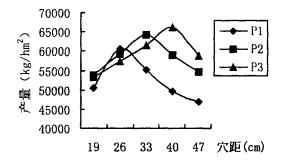


图 1 加工型甜椒不同品种和密度产量比较

由表 2 方差分析结果说明: 各处理间差异达极显著水平 (F=19.79》 F0.01),品种和密度($P\times D$) 互作效应(F=11.11》 F0.01) 差异也达到极显著水平。通过新复极差测验结果表明: P3D4 和 P1D2、P1D2 和 P1D3、P1D3 和 P1D4 及 P1D5 处理间产量都达到极显著水平; P3D4 和 P3D3、P3D3 和 P3D2 及 P1D3 处理间产量都达到显著水平, P1D2、P2D2、P2D4、P3D5 等组合相互间均无显著性差异。

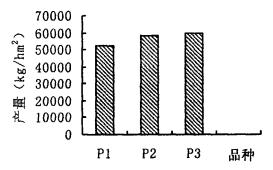


图 2 加工型甜椒不同密度对产量的影响

由表 1 可看出: 试验各处理产量以 P3D4 为最高, 产量达到 $66137.52~kg/hm^2$, 比 P2D3、P3D3、P1D2 分别增产 2.76%、6.92%、8.16%。 对品种 P1 而言, 以穴距在 26cm 时产量最高, 极显著的高于密度 D3、D4、D1; 品种 P2 和 P3 分别在穴距 33cm 和 40cm 产量最高(见图 1)。在大田生产上宜选用 P3D4、P2D3、P1D2 品种密度处理组合为宜。

表 3 加工型甜椒不同品种的产量结果及差异显著性

品种		平均数	显著				
	нит	77000	$\alpha = 0.05$	$\alpha = 0.01$			
_	Р3	67.76	a	A			
	P2	66.34	a	A			
	P1	59.95	b	В			

2.1.1 加工型甜椒不同品种对产量的影响 F测验表明,各品种间 $F=44.30 \gt F0.01$) 产量差异达到极显著水平。新复极差测验结果表明,P3和 P2产量差异虽不显著,但和

P1 产量差异均达到 极显著水平, P3、P2 分别比 P1 增产11.53%和 9.43%, 增产效果显著(见图 2)。

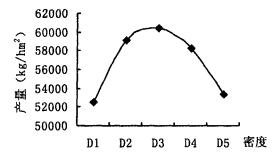


图 3 加工型甜椒不同密度产量比较

2. 1.2 加工型甜椒不同密度对产量的影响 由表 4 不同株距产量的显著性测验表明,以 33cm 的产量为最高,它极显著的高于 47cm 和 19cm 的产量(见图 3),但是与 26cm 和 40cm 产量之间没有显著差异; 47cm 与 19cm 的产量之间,也没有显著差异。

表 4 加工型甜椒不同密度的产量结果及差异显著性

	平均数	显著	水平	
нит	77000	$\alpha = 0.05$ $\alpha = 0.0$		
D3	68.83	a	A	
D2	67.42	a	A	
D4	66.39	a	A	
D5	60.88	b	В	
D1	59.91	b	В	

2.2 不同品种和密度对加工型甜椒产值的影响

处理组合	青椒折 合产量	青椒折 合产值	红椒折 合产量	红椒折 合产值	折合 总产量	折合 总产值
	(kg/hm^2)	(元/hm ²)	(kg/hm^2)	(元/hm2)	(kg /hm ²)	(元/hm ²)
P1 D 1	26 390. 76	10 556 30	24 122. 29	18 09 1. 72	50 5 13 . 0 5	28 648 02
P1D2	30 9 16. 75	12 366 70	29 820. 50	22 365.37	60 737.25	34 732 07
P1D3	28 023. 70	11 209.48	27 250. 12	20 437. 59	55 273.82	31 647. 07
P1D4	26 049. 55	10 41 9. 82	23 468. 72	17 601.54	49 5 18 . 27	28 021. 36
P1D5	25 158.60	10 063.44	21 762. 16	16 321.62	46 920.77	26 385. 06
P2D1	18 702.69	7 48 1. 08	35 110.53	26 332 90	53 813.22	33 813. 97
P2D2	20 577.05	8 230. 82	38 770.65	29 077. 99	59 347.70	37 308. 81
P2D3	22 036. 19	8 8 1 4. 48	42 277. 55	31 708 16	64 3 13 . 7 4	40 522 64
P2D4	20 229. 08	8 09 1. 63	38 834. 40	29 125.80	59 063.48	37 217. 43
P2D5	18 679. 30	7 47 1. 72	35 781. 32	26 83 5. 99	54 460.62	34 307. 71
P3D1	9 525.79	3 8 1 0. 32	43 821.61	32 866 21	53 347.40	36 676. 53
P3D2	10 893.35	4 357. 34	46 441 . 10	34 830 82	57 334.45	39 188. 16
P3D3	12 342. 14	4 936. 86	49 2 16. 20	36 912 15	61 558.34	41 849. 01
P3D4	13 912.80	5 565. 12	52 224. 72	39 168 54	66 137.52	44 733. 66
P3D5	11 410.58	4 564. 23	47 431. 84	35 573.88	58 842.42	40 138. 11

注: 青椒产量为 8 月 10 日前产量; 青椒、红椒产值分别按当地市场价 $0.4 \, \pi$ /k g 和 $0.75 \, \pi$ /k g 计算。

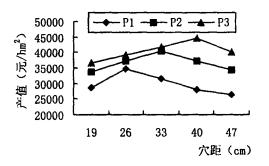


图 4 加工型甜椒不同品种和密度产值的比较

由上表可以看出, P1 为中早熟品种, P2 为中熟品种, P3 为晚熟品种。P1、P2、P3 品种青椒产量和产值依次降低, 以P1D2组合青椒产量和产值最高, 且上市早于 P2、P3 品种10d和 20d左右; 红椒产量和产值 P1、P2、P3 品种依次升高,

其中以 P3D4 和 P3D3 产量和产值最高, P2 品种以 P2D3 组合产量和产值最高。从总产量和总产值看,以 P3、D4 的产量和产值最高(见图 4),产量分别比 P2D3、P3D3 高 2.76%和 6.92%,产量分别比 P3D3 和 P2D3 高 6.45%和 9.41%。

3 小结与讨论

试验结果表明,小叶茄门、中叶茄门、大叶茄门3品种的产量达到极显著水平。小叶茄门上市较早,比中叶、大叶茄门品种分别提前上市10d~20d左右,可以为企业的早期加工提供青椒原料。

在一定范围内,随着密度的增加,产量有升高的趋势,且达到极显著差异,以密度为127 590 株/hm²(33cm 穴距)时产量为最高;品种和密度互作以小叶茄门161 940 株/hm²(26cm 穴距)青椒产量和产值最高,红椒以大叶茄门105 270株/hm²(40cm 穴距)产量和产值最高。综合总产量和总产值以大叶茄门105 270 株/hm²(40cm 穴距)为最高。

虽小叶茄门青椒产量和产值高于其他两品种, 但由于其价格、总产量和总产值都显著的低于其它品种, 这样会严重

挫伤菜农种植的积极性, 影响甜椒早期的供应和企业持续的生产加工, 在栽培上要求早、中、晚熟品种合理搭配, 这样才能满足对加工企业原料的充分供应。 建议相关企业应提高甜椒早期收购价格, 保护菜农利益, 提高其种植积极性, 以满足加工企业早期原料的持续供应。

综上所述,加工型甜椒小叶茄门、中叶茄门、大叶茄门三早、中、晚熟品种要合理搭配,其最适宜的栽培密度分别为 161~940~株/hm²(26em~穴距)、127~590~株/hm²(33em~穴距) 和 105~270~株/hm²(40em~穴距)。

参考文献:

- [1] 胥树高. 脱水甜椒品比试验[J]. 四川农业科技, 2003, (5): 20-20.
- [2] 鄂利锋, 殷学贵, 陈修斌, 等. 加工型甜椒不同播期试验研究初报[J]. 中国农学通报. 2005, 21(9): 321-323.
- [3] 李酉开. 土壤农业化学常规分析法[M]. 北京: 科技出版社, 1993; 67-1191.

富贵竹加工中的问题及对策

盛爱武1, 乔爱民1, 兰霞1, 高飞2, 王睿敏1

- (1. 仲恺农业技术学院园艺系,广东广州 510225;
 - 2. GRAND PRODUCTS INS, 18855E.

SAN JOSE AVEUNE CITY OF INDUSTRY, CA 91748)

中图分类号: S153.6⁺1 文献标识码: B 文章编号: 1001-0009(2006)04-0021-01

富贵代(Dracaena Sanderiana var virens) 是龙舌兰科龙血树属常绿观赏植物,又名开运竹。生产上常取富贵竹茎干为主材,将其剪切成不等长的茎段,将这些不等长茎段内长外短、逐层递减排列,捆扎成三、五、七层宝塔状;或将茎干弯曲别致的富贵竹扎成一把,插入高瓶观赏。用富贵竹加工的产品造型简洁、小巧,既富有竹韵,又充满生机,并寓有富贵、吉祥的含义,不仅深受我国人民喜爱,近年来在欧、美等国也大受欢迎,成为当地家庭和办公室常见的装饰植物。我国南方有大面积富贵竹种植,富贵竹采后加工的产品内销和出口量均很大。

1 富贵竹上端切口及脚部的保鲜

富贵代在采后加工过程中,茎段上端切口 易出现不均匀 开裂、黄化、干枯等现象,切口表面还会长出多种颜色的霉菌;下端切口(简称脚部)1~5cm 处在水养及贮藏运输(简称贮运)中易出现黄化、软腐等现象,并且长时间不能生根,若不及时处理,整根富贵竹都会腐烂。分析其原因,主要是水份失衡和微生物感染所致。富贵竹茎段剪切后,上端切口暴露空气中,下端切口尽管浸入水溶液中,因为此时无根系,吸水有限,且整个输导系统是开放、裸露的,上端切口会因过度蒸腾失水而皱缩,甚至暴裂。上、下端切口处营养物质的外

流和环境中细菌、真菌等微生物的存在而易出现发黄、软化 以至腐烂现象。因此,我们主要采用促进吸水、减少蒸腾、杀 菌、提高植株抗性等方法来解决这些问题。经过试验,筛选 出 12 组对切口保鲜效果较好的配方及处理方法,找到了两 组最佳配方, 通过反复试验发现: 冬季环境温度低且空气干 燥,富贵竹代谢缓慢,应提高富贵竹活力,促进水份吸收及保 持, 注意杀菌, 配方 1‰托 布津+ 200mg/L Al₂(SO₄)₃+100 $mg/LVC+0.1mg/LVB11+0.1mg/LVB_6+0.1mg/LVB5$ +0.1mg/LVB₂, 浸两端各12h, 效果最好; 夏季温度高, 蒸 腾失水严重,此时应增强富贵竹的抗旱、抗菌能力,切口保鲜 采用配方 1%托 布津十 200mg/L Al₂(SO₄)₃+100 mg/L VC +200mg/L CaCl₂+200 mg/LCCC+1%SUC, 浸两 端各 12h, 1d 后用 50mg/L 硼酸+200mg/L 硫酸铝浸上端切口 12h 效果最好。经上述两组配方处理后的富贵竹茎段切口 均呈现理想状态:收口均匀、细密、不皱缩、米白色,茎段外皮 层是完整的绿色。

富贵仟茎段脚部黄化的主要原因是细菌感染, 进而 引起导管堵塞, 水份、营养吸收受阻, 进一步恶化以至整根富贵仟腐烂、死亡。 我们从实验中筛选出两组药剂: 200 mg/LAb (SO_4) $_3+0.05 \text{ mg/L}$ 2 4-D+1.0 mg/L La (NO_3) $_3$: 200 mg/LAb (SO_4) $_3+0.05 \text{ mg/L}$ 2, 4-D+1.0 mg/L La (NO_3) $_3+0.1 \text{ mg/LVB}_5+0.1 \text{ mg/LVB}_11$ 对脚部黄化的防治效果极显著, 尤其是后者, 对已黄化材料救治效果达 90%, 生产中发现它对健康材料的防治效果达 100%。

2 富贵竹模拟贮藏运输

货柜出口 贮运造成富贵价加工产品叶片黄化、植株腐烂、死亡的损失率高达 30%,造成了极大的经济损失。 通过模拟贮运试验,我们发现,货柜温度保持 $15\sim16^{\circ}$ C, RH 80%时效果最好,在根部保水剂中加入 1%托布津+1.0mg/16-BA可将损失率降为零。采用这种方法,冠丰企业在出口 贮运中,货柜的损失率降到了 5%以下,极大地提高了经济效率。