保护地黄瓜无公害肥料筛选试验

尹义彬1,王 彤2,刘海军2,张建波3

(1. 牡丹江市农业技术推广站, 牡丹江 157000;2. 黑龙江省经济作物技术指导站, 哈尔滨 150030;3. 宁安市果树技术指导站)

中图分类号:S642.206⁺.2 文献标识码:B 文章编号:1001-0009(2003)04-0015-02

肥料是保护地黄瓜生长过程中的不可少的养分供给。而在人们崇尚"绿色健康食品"的消费时代,作物生长所需的养分也需要达到无公害标准,因此通过探讨几种常用有机肥料对保护地黄瓜产量、品质及抗病性的影响,筛选出适合于棚室黄瓜无公害生产的新型肥料,找出成本低,肥效高,无污染的肥料种类,为黄瓜无公害优质化栽培提供科学依据。

1 材料与方法

1.1 试验地点

试验地点为宁安市宁安镇临江村,每栋大棚面积 578 m² (10.5 m×55 m(米)),大棚南北走向。土壤类型为草甸土,土壤肥力中等,前茬为番茄。

1.2 试验肥料

试验肥料来源于黑龙江省无公害生产资料肥料类推荐产品:(1)龙棋牌强力酵素有机肥,黑龙江省达丰科技开发有限公司提供;(2)田雨牌生态多元双效肥,齐齐哈尔田雨绿色农业工程公司提供;(3)瑞享牌有机复合肥,绥化瑞享生态工程公司提供;(4)八达岭牌高效有机活性肥,北京长城有机肥有限公司提供;(5)绿薪宝牌生物有机复合肥,佳木斯绿薪宝生物科技有限公司提供。

1.3 供试品种

供试黄瓜品种为以色列无刺黄瓜,宁安市出口蔬菜经纪 人王克存提供。

1.4 施肥方法及用量

做基肥, 定植后于 2002 年 4 月 25 日株间埯施, 667 m^2 用量 60 kg(公斤)。

1.5 试验设计

本试验设 6 个处理: 处理 1: 绿薪宝牌生物有机复合肥; 处理 2: 龙祺牌强力酵素有机肥; 处理 3: 常规肥高效复合肥施可富; 处理 4: 八达岭牌高效有机活性肥; 处理 5: 瑞享牌有机复合肥; CK: 田雨牌生态多元双效肥。采用随机区组设计, 3 次重复, 小区面积 9 m²(平方米)。黄瓜种植密度为 3 株/m²(平方米), 3 月 1 日播种, 4 月 25 日定植。各小区苗数均为 20 株, 管理条件一致。于 6 月 7 日、6 月 14 日随水进行冲施肥 2 次, 每 667 m²(平方米)每次冲施施可富 18 kg(公斤); 于 6 月 8 日和 6 月 15 日分别喷洒霜霉威和克露一次防病。

1.6 调查及测定项目

于 5 月 30 日、6 月 20 日分 2 次对株高、叶色,以及霜霉病

发生情况进行调查。收获结束前,在每一重复小区内取有代 表性果实 5 个,然后将同一处理的各重复小区的样品混合,进 行果实品质测定。以小区为单位测定产量。

2 结果与分析

2.1 各试验处理对生长发育的影响

2.1.1 对叶色的影响 从表 1 可以看出,各处理叶色均比对 照深,表现为绿色至浓绿色,其中处理 5 效果最明显。

表 1 不同肥料处理对黄瓜叶色的影响

重复 处理	1	2	3
1	深绿	绿	深绿
2	绿	绿	深绿
3	黄绿	浅绿	浅绿
4	绿	绿	深绿
5	绿	绿	深绿
CK	绿	浅绿	绿

(调查日期5月30日)

2.1.2 对黄瓜生长前期株高的影响 从表 2、表 3 对不同肥料处理黄瓜株高的方差分析结果看,各处理间的差异不显著,说明在黄瓜生长前期(5 月 30 日)不同肥料处理对黄瓜株高影响不大。

不同肥料处理对黄瓜株高的影响 表 2 (cm) 处理 Т, X_t 337 112.3 处理1 382 127 3 处理2 329.5 109.8 处理3 处理4 355.3 118.4 处理 5 378.3 126.1 CK 362.8 120.9 T, T = 2144.9X = 714.9

(调查日期5月30日)

2.1.3 对黄瓜生长中、后期株高的影响 从表 4 可以看出各肥料处理的平均株高均高于处理 3(施可富),处理 2 和 CK 较高,比处理 3 高出 20 cm(厘米)以上,处理 5 最矮,但仍比处理 3 高出 13.2 cm(厘米)。从表 5 数据说明在黄瓜生长中、后期

^{*} 该项研究为黑龙江省农业重点攻关课题内容之一. 收稿日期:2003-01-20

(6月20日左右)不同肥料处理对株高虽有一定影响,但未达到显著水平。

表	3	各				
变因	df	SS	MS	F	F _{0.05}	F _{0.01}
区组	2	118.6	59.3	1.03	4.10	7.56
处理	5	756.7	151.34	2.62	3.33	5.64
误差	10	577.7	57.77			
是变量	17	1452.97				

表 4 不同肥	科处理对黄瓜株高的	〕影响 (cm)
处理	T,	\mathbf{X}_{t}
 处理 1	548.6	182.9
处理2	565.1	188.4
处理3	499.6	166.5
处理4	542.3	180.8
处理 5	539.2	179.7
CK	564.6	188.2
T _r	T = 3 259.4	X≈1 086.5

表 5 各处理株高方差分析						
变因	df	SS	MS	F	F _{0.05}	F _{0.01}
区组	2	101.6	50.8	0.8	4.10	7.56
处理	5	961.5	192.3	3.03	3.33	5.64
误差	10	635.4	63.5			
总变异	17	1 698.5				

2.2 各试验处理对黄瓜产量的影响

表 6	试验小区产量	(kg)
处理	T_{ι}	$\mathbf{X}_{\mathfrak{t}}$
处理 1	155.1	51.7
处理 2	158.3	52.8
处理3	155.4	51.8
处理4	156.3	52.1
处理 5	155.6	51.9
CK	157.5	52.5
Т,	T=938.2	X = 312.7

表	7	各试验处理小区产量方差分析				
变因	df	SS	MS	F	F _{0.05}	F _{0.01}
区组	2	0.12	0.06	0.26	4.10	7.56
处理	5	2.69	0.54	2.35	3.33	5.64
误差	10	2.25	0.23			
总变异	17	5.06				

从表 6、表 7 对各试验处理小区黄瓜产量的方差分析表明,不同试验处理间的差异不显著,说明不同肥料处理对黄瓜产量影响不大。但从表 6 可以看出,处理 2(龙祺)的产量最高,处理 1(绿薪宝)的产量最低。龙祺、田雨、瑞享、八达岭几种复合肥处理的产量均高于常规肥施可富,唯有绿薪宝低于常规用肥。

2.3 各试验处理对黄瓜霜霉病发生程度的影响

从表 8 可以看出处理 1 黄瓜霜霉病的发病率最高,达 40%。常规肥的黄瓜霜霉病发病率为 38%,而施用田雨牌生物肥的黄瓜霜霉病发病率最低,仅为 30%,说明不同肥对植株抗病性产生一定影响。

表 8 不同试验处理霜霉病发病情况

项目 处理	调査株数	发病株数	发病率(%)
处理 1	50	20	40
处理 2	50	18	36
处理3	50	19	38
处理 4	50	17	34
处理 5	50	16	32
CK	50	15	30

2.4 各处理对黄瓜品质指标影响

表 9 各试验处理黄瓜果实中亚硝酸、重金属、

农药残留量检测结果							(mg/kg				
東日	亚硝 酸盐	砷	铅	汞	幣	氰	杀螟 硫磷	马拉	乐果	放放畏	観戊 菊脂
处理 I	0.66	0.001	0.018	(0.00006	0.240	0.02	(0.011	未検出	(0.011	(0.02	⟨0.003
处理 2	0.21	0.001	0.018	(0.00006	0.240	0.02	(0.011	未検出	(0.011	(0.02	(0.003
处理 3	0.39	0.001	0.018	(0.00006	0.240	0.02	(0.011	未检出	(0.011	(0.02	(0.003
处理 4	0.30	0.001	0.018	(0.00006	0.240	0.02	⟨0.011	未検出	(0.011	(0.02	(0.003
处理 5	0.25	0.001	0.018	(0.00006	0.240	0.02	(0.011	未検出	(0.011	(0.02	(0.003
CK	0.069	0.001	0.018	(0.00006	0.240	0.02	(0.011	未检出	(0.011	(0.02	(0.003

从表 9 可以看出, 几种肥料处理黄瓜果实中亚硝酸盐的含量均低于 4 mg/kg(毫克/公斤), 均不超标, 但从几种肥料比较看, 产品中亚硝酸盐含量由高到低的顺序依次为: 处理 1 (绿薪宝) > 处理 3 (施可富) > 处理 4 (八达岭) > 处理 5 (瑞享) > 处理 2 (龙祺) > CK(田雨)。并且, 不同肥料处理黄瓜产品中的几种重金属、氟及农药残留均未超标。

3 结论与讨论

- 3.1 试验所选择的各种肥料对保护地黄瓜中、后期生长有一定的加速作用,但均未达到显著水平;对产量影响上表现不明显;对增强植株抗霜霉病效果明显。
- 3.2 每种肥料对黄瓜品质指标硝酸盐含量影响差异较大,其中以田雨最低,而每种肥料对食品指标中要求检验的几种重金属、氟及农药残留均没有影响。
- 3.3 试验所选的每种肥应用于春茬保护地黄瓜生产中均能 使黄瓜产品达到无公害食品标准。
- 3.4 进行春茬保护地黄瓜无公害生产,在所试验的复合肥料中,以选择田雨为最佳。