菜田应用丰抗素试验

王旭维1,宫亚茹2

近年来,随着环保意识的加强,"无公害绿色食品"生产应运而生,给传统蔬菜生产带来了挑战。各种化学肥料、药剂、调控剂的大量使用给菜农带来了巨大利益,也给消费者带来了更多的困惑和不安。从长远看,这种矛盾是极不利于蔬菜生产发展的。为此,我们引进了一种来自天然的植物生长调节剂——ZT—1 丰抗素。

丰抗素是从自然界中挖取到的一种活性物质,该产品使用时呈液态状,白色无味,中性,不燃烧、无毒、无害、无残留,对土壤及环境不造成任何污染,对人、禽、畜绝对安全,其生理作用在于:刺激根系发育,促进叶绿素合成,加强同化作用,增强植株抗逆性,从而达到增产目的。

1 材料与方法

- 1.1 试材 根茎类蔬菜: 马铃薯、洋葱; 叶菜类蔬菜: 甘蓝: 果菜类蔬菜: 茄子。
- 1.2 试验方法 采用播前处理种薯和播后喷洒植株以及播前播后同时处理三种方式。在每个试点分别设置对照区,管理方式相同(详见表 1)。

表 1 菜田施用 ZT-1 处理方式

品种	地点	土质	播种时间	定植	收获	处理时间	处理方法
马铃 薯	双庙子	黄棕壤	10/4	_	20/7	30/5	3500 倍液叶喷
马铃 薯	大 洼	黑土	7/4	_	20/7	7/4.16/6	8000 倍液拌种 5000 倍液叶喷
马铃 薯	长 发	沙壤土	10/4	_	21/7	10/4	8000 倍液拌种
甘 蓝	双庙子	壤 土	10/3	27/4	10/7	30/4	2500 倍液叶喷
洋 葱	双庙子	壤 土	_	5/4	12/7	15/5	2500 倍液叶喷
茄 子	双庙子	壤 土	10/3	26/5	29/6	10/6	2500 倍液叶喷

2 应用效果

2.1 在马铃薯上的应用效果 植株外观叶片肥厚,根系粗壮且多而密,薯块均匀光滑(见表 2)。 三种处理方式表 2 马铃薯植株生长情况(长发小区面积 160× 90cm²)

	薯秧鲜重(kg)	薯块重(kg)	根系状况
处理(拌种)	3.0	3. 62	根系发达、多而密
CK	2. 7	3. 45	一般
<u></u> ±%	11. 1	4. 93	

表 3 菜田施用 ZT-1 增产效果

地点:	处理方法	折产量 kg/667m ²	±绝对值	±%	用药浓度
长发	拌种 CK	1676.7 1598.0	78.7 —	4.9	8000 倍液
大洼	拌种 叶喷 拌+喷 CK	2916.7 3005.6 3155.6 2833.4	83.8 172.2 322.2	2.9 6.1 11.4	8000 倍液 5000 倍液 8000 倍十5000 倍液 —
双庙子	叶喷 CK	2756.4 2490.8	265.6	10.6	3500 倍液

均表现增产,其中拌种加叶喷增产幅度最大,为 11.4%。叶喷次之,拌种增产也在 $3\% \sim 5\%$ 之间;还可以看出,

3500 倍液叶喷效果大大好于 5000 倍液叶喷, 由此看出, 丰抗素的增产作用是明显的(表 3)。

2.2 在洋葱上的应用效果 前期处理地块地上部长势旺盛, 收获后鲜茎个大, 单个横径超过 10cm 的占整个处理地块的 1/5, 而未处理地块, 超过 10cm 的微乎其微, 总的看增产幅度较大(如表 4)。

表 4 洋葱长势情况对比

	地上部鲜重 (g)	平均单个重 (g)	单个横径 (cm)	折产量 (kg/667m²)
	148. 6	84. 8	8. 86	2652
CK	106. 9	56. 4	7. 04	1692
土绝对值	41.7	28. 4	1.82	960

- 2.3 在甘蓝上的应用效果 未喷施丰抗素地块平均单个重在 $0.78 k_{\rm g}$ 折产量 $2600 k_{\rm g}/667 {\rm m}^2$,而处理地块平均单个重在 $1 k_{\rm g}$ 以上,折产量 $3443 k_{\rm g}/667 {\rm m}^2$,增产 32%。
- 2.4 在茄子上的应用效果 叶片肥厚,植株高大,并且较对照落果严重,坐果率下降,收获时调查,最终产量与对照比无明显差异。

3 讨论分析

丰抗素在以叶、根茎为产品器官的蔬菜上应用效果 很好, 增产幅度较大, 在以果实为产品器官的蔬菜上应用 效果不甚理想。产品器官的形成,不论是果实、叶球或块 苓, 都要在大量营养生长以后, 又要适时地发育才能实 现,也就是要在产品器官形成前,有繁茂的茎叶生长,才 能达到高产的目的。丰抗素增产原因在于拌种促进了根 的活力, 加速了地下部根对无机物的吸收, 叶面喷施, 加 速了地上部叶茎内叶绿素的形成, 促进了光合作用, 从而 叶片肥厚, 叶面积增大, 同化作用大于异化作用, 养分迅 谏积累,并逐步由生理活性小的器官向生理活性大的器 官转移,也就是说马铃薯、洋葱、甘蓝等茎叶菜类蔬菜当 块茎、鳞茎或叶球迅速膨大生长时,植株在丰抗素的促进 下,同化产物已积累得相当多,因此,向产品器官转移的 营养物质就多,这样就表现出了产品形状大、丰产。 而果 菜类蔬菜花期喷施后,加速了植株内的营养生长,造成植 株疯长,叶面积指数超过4,这样,营养物质不仅没向产 品器官(果实)转移,反而转移到了正生长旺盛的新生叶 上, 使生殖生长的进行受到抑制, 导致落花落果。由此看 出,旺盛的同化器官是茎叶类蔬菜高产的基础,丰抗素对 同化器官的形成和加速生长起到了促进作用。

4 注意事项

- 4.1 拌种和喷洒相结合是使用丰抗素的最佳方式。
- 4.2 喷施丰抗素后,在栽培管理上要加大施肥,以保证最大限度地形成光合产物。
- 4.3 要根据各蔬菜的不同特性,合理确定喷施时期。在根茎、块茎叶球膨大前喷施,能很好地积累同化产物。
- 4.4 丰抗素可与化肥、农药混用,但不能与除草剂混用。
- (1. 辽宁省昌图县农业局, 112500; 2. 昌图县保力果菜站)