NORTHERN HORTICULTURE

周

青 郭金华 王

文

彰

A试剂提高葡萄品的

提 要

本文报道了AF 试剂对葡萄的优质增产作用。研究结果表明: 于浆 果 膨 大 期喷布 100PPmAF 四 次,可提 高叶绿素含量,增 强光合速率,增加比叶重,加快果实增长速

率、改善品质。促进早熟,提高产量。该研究为北方落叶果树的优质高产找到了一条新途径。

黄河故道地区葡萄的成熟多集中在8月份,时逢高温多雨、光照不足的季节。特殊的气象条件使植株的光呼吸加剧,光合速率降低,同化产物积累和输出减少,限制了葡萄品质和产量的提高,是当地葡萄生产急待解决的问题。AF 试剂的应用研究,为上述问题解决找到了一条新的途径。本研究是从生理调控入手,通过减少光合作物消耗,增加积累来协调果实生长发育对营养物质的需求,进而达到优质高产之目的。两年的试验结果较为理想,现将其报道如下。

材料与方法

试验在安徽省国营砀山果园场 13、14 分场进行。试材为 30 年生玫瑰香葡萄。AF 试剂选用上海及青岛产品。土壤为泡沙土,栽植密度 3 × 2.5 米², 窝架多主蔓水平扇形整枝,行中短枝修剪。选择树龄相同,长势中庸,地貌及水肥条件一致的68株葡萄为一小区,三次重复、随机排列。于浆果膨大期后(6 月30日)用机动喷雾器对整株叶面喷布AF试剂水液,以滴水 为 度。每株喷量约 2.5 公斤。每隔 10 日一次,计四次,对照喷施等量清水。

AF 试剂生理作用的测定为: Arnon 法测定叶绿素含量,改良半叶法测定净光合速率、干重法测定比叶重;品质测定为: 斐林法测定还原糖含量、酸碱中和法测定总酸含量,阿贝折射仪测定可溶性固形物含量,其数据均以三次重复的平均值表示。

* 安徽省教委基金项目,1989年9月通过省级鉴定。

北方园艺

结果分析

一 AF试剂对葡萄经济产量的影响

1. 对百粒重及穗重的影响

1988年果实生长期 遇 到 持 续的高温少雨,在此情况下, 经 100ppm AF 试剂处理的葡萄植株其百粒重 和 槵 重 分别比对照提高 18.6%和25.2%。1989 年同期, 气温偏低多雨,同样处理的葡萄植株浆果的百粒重和穗重较对照提高 14.4%和 20.1%。经统计分析 t 值检验, AF 试剂 在两种迥然不同的气象条件下,均具稳定的增重效果(表1)

表 1 AF试剂对葡萄经济产量的影响

. \	项目			
处理		百粒重	平均穩重	平均产量
时间		g	kg	kg/耐
1988	CK	269	409	1412.2
	AF	319	512	1803.7
	增减% t检验	+ 18.6 3.704*	+ 25.2	+ 27.7
1989	CK	243	324	819
	AF	278	389	1020
	增减%	+ 14.4	+ 20.1	+ 24.5
	t检验	3.548*	4.693**	5.127**

^{*} $t_{0.05} = 2.776$ ** $t_{0.01} = 4.604$

2. 对葡萄浆果产量的影响

由表1可知, 喷布 100ppm AF 试剂的 葡萄, 其亩产量比对 照分别增加 391.5 和201 公斤, 增产率为 27.7% 与 24.5%。 t 值检验表明,处理植株的产量同对照植株的产量差异明显,增产的原因主要在于百粒重和穗重的增加。

二 AF试剂对葡萄品质的影响

1. 对浆果主要生化成分影响

AF 试剂具有提高葡萄甜度,降低酸度的作用。试验表明,经 100ppm AF 试剂处理的葡萄植株,可溶性 固形物比对照提高 2.06%—2.90%,还原糖含量增加1.94%—

2.70%, 酸 度降 低 0.15%—0.2%。至于 1989年各项指标低于前年,可能同气象因素 有关(将另文报道),但统计分析表明,处 理与对照植株浆果的品质差异仍较显著(表2)。

表 2 AF 试剂对葡萄浆果主要成分的影响

处	项目			
`	理	可溶性固形 物	还原槽	总酸
[ii] [ii]		(%)	(%)	(%)
1988	CK	11.95	10.50	0.95
	AF	14.85	13.20	0.75
	增减值 t 检验	+ 2.90 5.633**	+2.70 5.160**	-0.20 2.833*
1989	0	10.42	8.74	0.83
	AF	12.48	10.68	0.68
	增减值 t检验	+ 2.06 4.856*	+ 1.94 5.147**	-0.15 2.794°

* $t_{0.05} = 2.77$

** $t_{0.01} = 4.604$

2. 对浆果着色的影响

从7月17日起对浆果的着色情况进行定时定位观测,结果如表3。经AF试剂处理的葡萄植株,其浆果的着色度明显高于对照。相关研究表明,这同处理植株浆果内还原糖积累有关,其相关系数达0.929。

三 AF试剂对葡萄植株的生理作用

1. 对叶绿素含量和光合速率的影响

Smart 证实,葡萄叶幕形成后,外部叶片的净光合速率可达内部叶片的 6—7 倍。 其因在于,内膛光照不足成为光合作用的限 制因子,此时若能提高叶片叶绿素含量则可 对光照不足佐以补偿作用。本试验表明,经 AF 试剂处理的葡萄叶片,田间可见叶色加 深,生理测定显示,其叶绿素含量较对照提 高 15.30%(表 4)这对群体遮荫状态下内 部光照不足无疑起到缓解作用。此外,试验 结果还表明,处理植株叶片的光合速率明显 高于对照,说明 AF 试剂具有增强其"源" 之作用。

2. 对比叶重和副梢生长的影响

由试验结果得知, 经 AF 试剂处理的葡萄植株, 叶片比叶重较 对 照提高 21.7%,

北方园艺

(总60) 19

而副梢的节间平均 长度 却比对照植株下降 15.80%。前者增加 乃 因光呼吸消耗减少, 叶片同化产物积累增加所致;后者的降低则 是由于 AF试剂抑制营养器官生长的结果。增 加积累,减少消耗,使更多的同化产物输入 果实(库),为优质高产提供保证(表 4)。

3. 对果实发育和成熟期的影响

定时观察发现,喷布 AF 试剂的葡萄植株,果实发育加快,成熟期提早 4-5 天。研究表明, AF 试剂的上述效应是与它提高 浆果生长速率相关的。由表 5 看到,经 AF 试剂处理的葡萄植株,其浆果生长速率达4.958/百粒·天,较对 照提高 26.3%。此乃果实发育加快,成熟期提前的一个重要原因。

表 3 AF试剂提高葡萄还原糖和着 色度的相关分析

項目	目处	理	时间 (月、日)			
		7.17	7.21	7.277.31	8.3	
还原糖%	% CK	2.93		5.416.02		
	AF	3.11	6.33	7.448.03	10.68	
者色度%	∠ CK	4.5	12.3	25 36	58	
	AF	21	28.5	52 69.4	82	

 $r = 0.929 > r_{0.05} = 0.878$

1989 年

表 4 AF试剂对叶绿素含量、光 合速率、比叶重及副梢长度影响

	叶绿素含量mg·dm ⁻²	光合速率 mgco2·dm ⁻² ·h ⁻¹		副梢平均 节长 cm
CK	6.62	14.78	9.20	3.8
AF	7.63	18.42	11.22	3.2
增减%	+15.3%	+24.6%	+ 21.7%	- 15.8

表 5 AF 试剂对葡萄浆果增长速率影响

处 理	平均百粒重(g) *		百粒增重	浆果增长速率	
	6月30日	8月6日	g/37天	g/百粒·天	增减%
CK	118	263	145	3.92	
AF	118	301	183	4.95	+ 26.3

* 为9穗平均值

讨 论

C。植物葡萄在果实生长 期 间需要大量 光合同化产物供应果实, 但因光呼吸的存在 及副梢生长对同化产物的消耗,使上述需求 难以满足。果期同化产物相对馈乏, 是限制 浆果产量和品质提高的内在生理致因。本文 研究表明,于葡萄浆果膨大期喷布试剂,既 可提高叶绿素含量,增强光合速率、增加比 叶重、加快同化产物由源向库的转运; 又能 抑制副梢生长、减少同化产物消耗, 缓解此 时生殖生长同营养生长对养料的竞争,其结 果是促进同化产物在浆果中的积累、分配和 转化, 使果实生长速率加快、穗重增加, 最 终取得增产、早熟和改善品质的目的。关于 AF 试剂生理调控的机理可能是多方面的。 1. 板村徼、张英聚等指出,硫与高等植物 叶绿素合成关系密切, 其含量不足, 往往成 为合成反应的限制因子。AF 试剂进入植体 后, 分子中的硫被部 分 还 原成—SH, 补偿 了硫的不足,并促进 叶绿素合成, 2. AF 试剂提高净光合速率一方面是由于它进入植 体后同乙醛酸生成α-羟基磺酸, 专一抑制光 呼吸的关键酌一乙醇氧化酶活性,使光呼吸 消耗减少所致,另一方面可能同它促进循环 和非循环光合磷酸化,提高 1.5一二磷酸核 酮糖羧化酶活性有关。此外,我们以往的研 究还表明,AF 试剂 具有促进光合产物输出 之效应。至于它抑制副梢生长,主要因为它 含有生长调节物。

实践证明,AF 试剂对果树无毒无害,成本低廉,喷施方法简便,效果明显。它的应用为北方落叶果树优质高产找到了一条有效途径,所以颇受生产部门欢迎。(安徽师范大学地理系生态研究室·芜湖市来稿时间1989年11月5日)

参加本项研究的还有张雷、吴宪峰、葛 敏申学英、杨怀波、周恩全等,一并致谢。

北方园艺