ZHANG Xiaoqin,LIANG Sihui,LUO Jinlong,et al.Differential Analysis of γ-Aminobutyric Acid (GABA) Enrichment in Different Tea Varieties[J].Northern Horticulture,2024,(21):70-75.[doi:10.11937/bfyy.20241529]
不同茶树品种γ-氨基丁酸(GABA)富集差异分析
- Title:
- Differential Analysis of γ-Aminobutyric Acid (GABA) Enrichment in Different Tea Varieties
- 文章编号:
- 1001-0009(2024)21-0070-06
- Keywords:
- γ-aminobutyric acid; anaerobic enrichment treatment; total amount of free amino acid; glutamate decarboxylase
- 分类号:
- S 571.1
- 文献标志码:
- A
- 摘要:
- 以一芽二叶茶鲜叶为试材,采取厌氧/好氧间歇交替富集技术富集茶鲜叶,对富集前后谷氨酸(Glu)含量、谷氨酸脱羧酶(GAD)活性、γ-氨基丁酸(GABA)含量、游离氨基酸(FAA)总量和茶叶色泽、香气差异进行分析,以期为GABA高富集潜力茶树品种的筛选提供参考依据。结果表明:8 h厌氧/好氧间歇交替富集处理显著提高了茶鲜叶GABA含量和FAA总量;不同茶树品种GABA富集潜力、富集前后FAA总量及富集前鲜叶GAD活性和Glu含量均以‘白叶1号’显著最高,其次是‘福鼎大白茶’;茶鲜叶FAA总量、Glu含量和GAD活性可作为筛选GABA高富集潜力茶树品种的参考指标。
- Abstract:
- Taking fresh tea leaves with one bud and two leaves as the test materials,anaerobic/aerobic intermittent enrichment technology was adopted to enrich fresh tea leaves.The differences of glutamic acid (Glu),glutamic acid decarboxylase (GAD) activity,γ-aminobutyric acid (GABA),total free amino acid (FAA),color and aroma of tea before and after enrichment were analyzed,in order to provide reference for the screening of tea cultivars with high GABA enrichment potential.The results showed that the intermittent anaerobic/aerobic enrichment treatment for 8 hours significantly increased the GABA content and the total FAA in fresh tea leaves.The highest GABA enrichment potential,total FAA before and after enrichment,GAD activity and Glu content in fresh leaves before enrichment were found in ‘Baiye 1’,followed by ‘Fuding dabaicha’.The total amount of FAA,Glu content and GAD activity in fresh tea leaves could be used as reference indexes for screening tea cultivars with high GABA enrichment potential.
参考文献/References:
[1]周俊萍,徐玉娟,温靖,等.γ-氨基丁酸(GABA)的研究进展[J].食品工业科技,2024,45(5):393-401.[2]蔡宇博,梁运江,张泊莹,等.γ-氨基丁酸(GABA)对盐胁迫下文冠果生理特性的影响[J].北方园艺,2022(19):53-60.[3]DAI W,XIE D,LIN Z,et al.A nontargeted and targeted metabolomics study on the dynamic changes in metabolite levels during the anaerobic treatment of γ-aminobutyric acid (GABA) tea[J].LWT,2020,126:109313.[4]LI R,LI Z,LENG P,et al.Transcriptome sequencing reveals terpene biosynthesis pathway genes accounting for volatile terpene of tree peony[J].Planta,2021,254(4):67.[5]杨高中,彭群华,张悦,等.厌氧处理对不同类型茶叶的氨基酸组成及生物活性的影响[J].茶叶科学,2022,42(2):222-232.[6]沈强,许凡凡,张小琴,等.真空厌氧间歇技术富集福鼎大白茶茶鲜叶GABA的参数优化[J].食品工业科技,2018,39(11):156-160.[7]CHEN Q,ZHANG Y,TAO M,et al.Comparative metabolic responses and adaptive strategies of tea leaves (Camellia sinensis) to N2 and CO2 anaerobic treatment by a nontargeted metabolomics approach[J].Journal of Agricultural and Food Chemistry,2018,66(36):9565-9572.[8]YU Z,YANG Z.Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function[J].Critical Reviews in Food Science and Nutrition,2020,60(5):844-858.[9]吴婷,李沅达,邓秀娟,等.萎凋方式对γ-氨基丁酸白茶香气成分的影响[J].食品安全质量检测学报,2022,13(13):4344-4351.[10]黄涛,郜秋艳,李美凤,等.喷施谷氨酸钠对茶叶γ-氨基丁酸含量及品质成分的影响[J].食品科技,2023,48(9):65-73.[11]王芳,陈百文.高γ-氨基丁酸岩茶加工工艺研究[J].茶叶通讯,2019,46(1):32-37.[12]黄亚辉.茶树种质间谷氨酸脱羧酶活性差异及γ-氨基丁酸茶的研究[D].长沙:中南林业科技大学,2010.[13]吴琴燕,陈露,张文文,等.脱氧剂厌氧处理对茶鲜叶γ-氨基丁酸富集的影响[J].中国食品学报,2018,18(9):203-209.[14]邵文韵.提高茶叶γ-氨基丁酸含量的方法优化及其在速溶茶产品开发中的应用[D].杭州:浙江大学,2014.[15]张金玉,李美凤,郜秋艳,等.不同厌氧时间对绿茶和红茶加工品质的影响[J].茶叶学报,2021,62(2):78-84.[16]许佳聪.富集γ-氨基丁酸的冷泡型绿茶加工工艺及品质形成研究[D].成都:四川农业大学,2022.
相似文献/References:
[1]王春燕,郭玉佳,张晓倩,等.不同浓度NaCl胁迫下γ-氨基丁酸对黄瓜幼苗生长及矿质元素吸收的影响[J].北方园艺,2014,38(03):5.
WANG Chun-yan,GUO Yu-jia,ZHANG Xiao-qian,et al.Effect of γ-aminobutyric Acid on Growth and Mineral Elements Contents in Cucumber Seedlings Under Different NaCl Concentration[J].Northern Horticulture,2014,38(21):5.
[2]任文奇,潘雄波,向丽霞,等.不同喷施频率外源γ-氨基丁酸对Ca(NO3)2胁迫下甜瓜幼苗生长的影响[J].北方园艺,2015,39(23):6.[doi:10.11937/bfyy.201523002]
REN Wenqi,PAN Xiongbo,XIANG Lixia,et al.Effect of Different Spraying Frequency of Exogenous γ-aminobutyric Acid on Melon Seedlings Growth Under Ca(NO3)2 Stress[J].Northern Horticulture,2015,39(21):6.[doi:10.11937/bfyy.201523002]
[3]齐昭京,夏秀英.壳聚糖复合涂膜对蓝莓贮藏品质及抗氧化系统的影响[J].北方园艺,2020,44(24):97.[doi:10.11937/bfyy.20200872]
QI Zhaojing,XIA Xiuying.Effects of Chitosan Composite Coating on Storage Quality and Antioxidant System of Blueberry[J].Northern Horticulture,2020,44(21):97.[doi:10.11937/bfyy.20200872]
[4]韩多红,王恩军,张勇,等.外源γ-氨基丁酸对盐胁迫下菘蓝幼苗活性氧和抗氧化系统的影响[J].北方园艺,2021,(06):111.[doi:10.11937/bfyy.20201151]
HAN Duohong,WANG Enjun,ZHANG Yong,et al.Effects of Exogenous γ-aminobutyric Acid (GABA) on Reactive Oxygen Species and Antioxidant System of Isatis indigotica Fort.Seedlings Under Salt Stress[J].Northern Horticulture,2021,(21):111.[doi:10.11937/bfyy.20201151]
[5]蔡宇博,梁运江,张泊莹,等.γ-氨基丁酸(GABA)对盐胁迫下文冠果生理特性的影响[J].北方园艺,2022,(19):53.[doi:10.11937/bfyy.20214619]
CAI Yubo,LIANG Yunjiang,ZHANG Boying,et al.Effects of Physiological Regulation of γ-aminobutyric Acid on the Salt Tolerance in Xanthoceras sorbifolia Bunge[J].Northern Horticulture,2022,(21):53.[doi:10.11937/bfyy.20214619]
备注/Memo
第一作者简介:张小琴(1986-),女,硕士,副研究员,现主要从事茶树栽培育种、茶资源利用与创新等研究工作。E-mail:bandnab@163.com.责任作者:沈强(1981-),男,硕士,研究员,现主要从事茶资源综合开发利用、茶叶加工与机械等研究工作。E-mail:shenqiang_gzu@163.com.基金项目:贵州省科学技术基金资助项目(黔科合基础-ZK[2021]一般154);国家自然科学基金资助项目(32160729);贵州省科技支撑资助项目(黔科合支撑[2020]1Y004号)。收稿日期:2022-04-10